

High-Resolution Global Mean-Annual Surface Runoff And River Flow Datasets For Use In Risk Assessments

Raghu Vamshi¹, Kathleen McDonough², Kathy Stanton³, Amy Ritter¹

¹Waterborne Environmental ²Procter & Gamble ³American Cleaning Institute

SETAC North America, Toronto November 4th, 2019

Outline

- Introduction
- Methodology
- Processing
- Results
- Flow comparison
- Summary
- Applications

Global River Flow – Introduction

- Outside the United States, no high-resolution river flow data publicly available for use
- Detailed river flow data needed for expansion of iSTREEM[®] beyond the United States and parts of Canada
 - iSTREEM[®] is a down-the-drain environmental exposure model to estimate chemical concentrations at wastewater facilities and effluent impacted rivers (<u>www.istreem.org</u>)

Global River Flow – Methodology

- River flow estimation is based on two steps:
 - Step 1: Estimating surface runoff, i.e., the amount of water that runs off a given area
 - Surface runoff from a single catchment
 - Step 2: Estimating river flow, i.e., capture the runoff water from a catchment, aggregate and route it downstream
 - •Aggregating runoff from several catchments which becomes flow for a stream or eventually a river

Surface Runoff – Methodology

Step 1: Surface runoff based on the Curve Number (CN) approach developed by the USDA (TR-55, 1986)

Eq. 1
$$\implies$$
 S = $\frac{1000}{\text{CN}} - 10$

CN = value between 0 to 100 based on land cover and hydrologic soil groups

S = potential maximum retention after runoff

Eq. 2
$$\rightarrow$$
 Q = $\frac{(P - 0.2S)^2}{(P + 0.8S)}$

- $\mathbf{P} = rainfall$
- **Q** = surface runoff

Surface Runoff – Processing

Global input datasets and spatial data processing

Precipitation (Fick et al., 2017. 10.1002/joc.5086)

Surface Runoff – Global gridded data

- Mean annual surface runoff for the globe
- Gridded data at 50m highest resolution currently available

Global Surface Runoff to River Flow

- Step 2: Compute river flow from runoff data
- Hydrologic routing at HydroSheds/HydroBASINS level-12 catchment scale

Global River Flow – Results

Mean annual river flow by region

Global River Flow – Results

- Global mean annual river flow
- Based on HydroSheds level-12 catchments

Global River Flow – China

Comparison against measured river flow gage data from the Global Runoff Data Center (GRDC)

Global River Flow – Japan

Comparison against GRDC gage data

Global River Flow – India

Comparison against GRDC gage data

Global River Flow – Ohio River, US

Comparison of river flows against the NHDPlus V2

Global River Flow – Summary

- Global surface runoff gridded data based on CN
 - Highest resolution currently available (50m)
- Global mean annual river flows
 - Estimated based on HydroSHEDS and HydroBASINS
- Comparison of flow data with
 - Existing river gage data in a few countries across diverse landscapes provided positive correlations
 - NHDPlus data for the Ohio River was positive too
- Next steps
 - Publication is in the works
 - Global runoff and river flow data will be made available for public use

Global River Flow – Application

- The mean annual river flow data is currently being used for iSTREEM[®] expansion
 - China Integrated ERA Framework (Ming et al., Platform 30)
 - Japan Global exposure model (Csiszar et al., MP123)
 - Canada and Mexico in development

Thank you!

Raghu Vamshi (vamshir@waterborne-env.com)

