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ABSTRACT

Phosphate laundry detergents have been banned in the Great Lakes drainage basin and a few
other regions of the U.S.A. New bans are considered from time to time. Any consideration of
new bans should include an evaluation of changes that have occurred in past bans. This paper
presents a method for estimating such changes. The method is illustrated with treatment plant
influent phosphorus mass loading data. AII data series anaJ-yzed to date were complicated by
drift, large variation, and sometimes seasonal patterns. With such data an appropriate time
series model is used to estimate the shift. An ARIMA (011,1) model has been used successfully
wíth many data sets. This model seems to be robust and has considerable intuitive appeal. A

seasonal component was needed in the model for a few data sets. A Bayesian approach was
developed to estimate the shj.ft. The effect of a detergent phosphate ban on influent treatment
plant phosphorus load appears to be about 0.3 kg/cap.-yr.
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INTRODUCTION

Intervention in environmental systems is often promulgated wÍthout complete knowledge of the
system. The promulgators typical]y have confidence that the intervention will cause a real
change, and in the direction of better quality, but without precise knowledge of how large the
change will be. The first bans on phosphate laundry detergents in the Great Lakes drainage
basin were interventions of this kind. Any consÍderation of new bans should include an
assessment of the existing data which show the effect of the bans. The largest effect of a
ban will be on raw sewage phosphorus concentration and treatment plant mass loadings. The
decrease in influent phosphorus loads of several treatment plants is estimated and the method
used to make the estiinate! is explained. The general problem is to estimate t'the effect of an
intervention that has been made with the intent of causing a system to change where the
behavior of the system is indicated by a set of data that are a time serigs, and so the order
of the data as weil as their magnitudä is important (Box and Tiao, 1975).rl

Estimating the change in phosphorus load when a detergent ban goes into effect may seem
straightforward. Abundant data exist for the period before the ban; some data are available
after the ban. It is tempting to assume that, there are fÍxed levels before and after the ban
and that the shift due to the ban is the difference between these averages. Having assumed
this much, one is 1ikely to also assume that all varlation about the leveLs Ís random and that
a t-test could be used to assess the statistical significance of the shÍft. This approach,
taken by Hartig and Horvath (DAz) and Jones and Hubbard (1986), has been criticized by
Berthouex et al. (L98ll, Pallesen et aI. (1985), and Booman and Sedlak (i986).
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Unfortunately' this method wilt often give misleading results, particularly for the confÍdencelimits of the estimated shift. 0f more than f0 sets of data anãlyzed to dáte, none could be
modeled as statÍonary levels with random variation. Most dÍsp1ayèO Oritt or t,rend, some had
seasonaL patterns' and all had significant serial correlation. These properties of the oatainvalidate the approach of subtracting averages-and usÍng a t-test. fî ti-rere is a driftr- -
simpJ.e averages are not a faÍr representation of the data. Observations distant from thé
intervention wouLd have little relevance to estÍmating the effect of the ban; data near the
ban should carry high weight. If there are seasonal effects, siqrple averageÁ may be Oiaseã ny
the number of observatíons in the before and after averages. Thib bias wiit ¡e óxaggeràteo ii
the record length is not a multiple of th9 length of the season, i.e. t2 mònths, zõ"moÀi¡rs,-etc. Ignoring serial correlation will make.the averages seem more precise than iney actuatÍy
are and bias the significance tests toward indicating a statistical.Iy significant sñift when'
none has occurred.

Time series analysis provides the means for properly taking the properties of the data into
aggoun!. A one parameter model fits most data sets. hlhere there is a seasonal pattern, aslÍghtly more complicated model Ís used.

A NONSEASONAL MODEL

The basic model describes the data, which are observed with error, as being generated by a
process that drifts as a random walk. This modeJ., called a random walk-wnite noise model in
Pallesen et al. (fSAS) is

Y¡=Y¿+e¡ (1)

Yt = Yt-t + Et Q)

where y¡ is the underlying true but unmeasurable value of the variable, yr is the observed
value of the variable¡ e¡ is the instantaneous error, and E¡ is the shock"eausing the ¡andom
walk (drift).

Equations I and 2 can be combined to express this as an ARrMA (orl,t) model of the Box-Jenkins(1976) family of time series models:

yt=yt-I*"t*0at_l 
O)

This representation of the data has considerable íntuÍtive appeal. It is easier to accept
than completely random variation about a fixed level. Levels at a partícular time are eiti-
mated by an exponentially weighted moving average, thus giving recent observations more weÍght
than distant observations. The parameter E is the weigh[ing factor for the moving aueragesi

A ban does not become effective Ímmediately. There is a transition period of about four
months. The transition period is treated as a gap, i.e. observations within the transitionperiod are omitted. The forecast of the moving average model is a horizontal pro¡eclion. -

The shift is estimated by forecasting across the ban, forecasting forward in time-from before
the ban' and backward in time from the post-ban level. The variãnce of the shift is the sumof the variances of the estimated pre- and post-ban l-evels plus the variance of the forecasts
across the transitÍon period. Details are given in pallesen et ar. (1995).

THE SEASONAL MODEL

The data sets that are seasonal have an annual cyele. þlhile the seasonalÍty is complex withinyears (not sinusoidal), it has been consistent yêar to year and the variance associated withit_is very small. It has been successfutly repiesented-parsimoniously as a seasonal randomwalk. A seasonal model that has been useful for several sets of data'Ís

Yt=Yt+st+et

Yt=Yt-t+ft
s¡=s¡-12+S¡

e¡ e N(0,o12)

ft e N(I,o22)

gt e N(o,or2)

(4)

(5)

(6)
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Instantaneous error, includíng observation error, is accounted for by Equation 4. Equation 5

represents a random walk component. _ Equation 6 incor.porates. the seasonal pattern' also as a

random walk. s¡ is the seasonal effect component and. f¡ is the random shock associated with
the seasonal effect. This model yields level forecasts.

The parameters in this model (Equations 4, 5, and 6) are the sigmas s = (o1, o2, o7) plus an

Ínitial state specification x(0). The Kalman fÍlter-state space approach can be used to
calculate the likelihood for any given set of values for o. Moteovetr for a series whích
includes an interventlon, which in turn gÍves rise to a gap of length G during which the
series has been shifted by the amount ô, this permits the likelihood to be calculated given o
and ô. This is an important prerequisite for the Bayesian analysis presented below for the
seasonal ease.

BAYESIAN ANALYSIS

In the Bayesian framework, the estimate of the shift ô, based on the data Y, can be made

unconditionally on the other parameters o. In the Bayesian framework' the estimate of the
shift delta, ô, based on the data Y will be made unconditionally on the other parameters
sigma. As wilt be expJ.ained, this Ís ultimately accomplished by estimating delta as the
weighted averâge of a number of individual estimates of delta in the region of maximum likeli-
hood in log sigma space. This has considerable appeal when the curvature of the likelihood
surface is quite Ìow and the point of maximum LÍkelihood is difficult to locate with preci-
sion, as it is in the present instance. As well as providing a basis for estimating delta in
such situations, the approach provides a realistic estimate of standard error of delta as
well.

The marginal posterior distribution p(ôlY) based on the noninformative prÍor distribution for
the parameters is

p(ô, o1, o2t 63) a p(ô)p(ot)p(o2)p(o3) a c/o1o2o3

a p(ô, log o1r log o2t log o3) c c

In general

p(ô,olY) a p(Ylô,o) p(ô,o) (9)

where the first factor on the right-hand side of 9 is the likelihood; the second factor is the
prior specifÍed in 7 and 8. It Ís helpful to factor the joÍnt density as

p(ô,olY) = p(ôlo,v) p(olv)

p(olv) =.1ô p(ô,olY) dô

SÍnce the parameters o are really nuisance parameters to be integrated out, p(olY) shall not
be derived analytically. It is sufficient to approximate it by its density values over a grid
of combinations of aI, o2, at.

It holds in general that the condÍtional distribution of ô is

p(ôlo,Y) c P(ô,olv) ( t2)

(7)

(8)

vlhere
( 10)

( t1)

Sinee the noninformative prior for (ô, o) was equivalent to a localIy uniform prior for
(6, 1og o1r 1og s2, Iog o3)r it is clear that the posterior distribution for these parameters
is'proþortional tõ the-liÉelihood in the parameter space of (6, log o1r 1og o2r J.og o3).

It is a property of likelihood functions that they tend towards normal (Gaussian) as the
number oî o'Oseriations çts large. This means, Ín particular, that p(6lo,Y) can be considered
approximately normal. Hence, fór given values of (1og o1, log o2, log o3)¡ i.e., for known o,
the conditional distribution p(ôlo,Y) can be constructed from Just three vafues of the
likelihood calculated from three ô values in the region around the conditional maximum.

A consequence of the likelihood being approximately normal is that the 1og likelihood is
approximately quadratic. Fitting a second order polynomial through these three points
produces a fftted function
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1(ô)=Aô2+Bô+C

Comparing this expression to the logarithm of a normal density function,

Ir(u,o2): ]n f(ô) = -(t/z) 1n(2rI) - ln(o) - (L/2) ((t-v1¡s1Z

yields the equivalence

(rl)

(t4)

(15)

(16)

(r7)

a = -(t/z)s2

B = u/oZ

o2 = -r/2A

v = -B/2A

so that, given o, the posterior distribution of ô is

p(ôlo,Y) e N(y = -B/2A, o2 = -I/zA)

In other words, this determines p(6lorY), Íncludíng the standardizing factor.

To get the unconditional dÍstrÍbution of ô, note that

p(ôlY) = /p(ô,olY) do = /p(ôlo,Y) p(olv) oo

This shows that p(ôlv) is really a weighted sum of conditional distributions p(Olo,Y), tne
weights being proportional to p(olY). Since the integration (Equation t7) is to be carried out
numerically, vre are rea}ly making the approximation that

/ p(ôls,Y) p(olY) do = ) p (olo,Y) p(olv) (18)

where the summation is over a grid of points-Ín the parameter space-of o. This grÍd should
have points laid out uniformly in the space (log o1, 1og o2, Iog o3). This will-make the
weights on the right-hand side of Equation 18 proportional to the likelihood functÍon
lntegrated-over the ô-dimension (since the likelihood and the posterior are proportional in
that space).

p(olY) Ís calculated in two steps. First, the related magnitudes of p(olY) at the grid points
are found, the values of which are really posterior probabilÍties for the regions around each
grid point. Then, the retative probabilities are standardized so that they õum to one before
ihe,summation (Equation 18) is carried out, i.e., p(olY) = I. The relative magnitudes of
p(oly) at the qrid Bojptq.aFe.fovnd byrnoting that the maximum density for a
N(U = -8,/2A, aZ = -t/¿H) orsErlDuElon I

f(ô = u) = I/o /-A/r . (19)

For a given value of o (a given grid point), the nonstardardized posterior had as its maximum

max likelihood = max{exp(Aô2 + Bô + C)}

= exp{A(-Bl2A)2 + eGs/ze) + C}= exp(C - B2/4A)

For p(6lo,Y) to integrate to 1.000, standardize by the factor

(zo)

k = (/-Ah)/exp(¿ - B2/4A) (2r)

Consequently, the marginal posterior density of o at this grid point is inversely proportional
to k,

p(olv) o 1-s7-r/2 exp(c - B2/4A) e2)

where the common factor n has been dropped for convenience. Combíning Equation 22 and Equation
J.9yie1dstheweightfunctionp(o|Y)tò.beusedinEquation]7tofinãpiôlY)

In summaty, p(6lY) is a weÍghted sum of normal distributions. Both the conditional distribu-
tions and weights are found from second-order polynomial fits to log likelihood values at three
ô points, this being done over a grid of (1og o1, 1og o2, Iogo3). The Bayesian approach,
applied here to the seasonal case, can be easÍ1y adapted to othér cases.
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RESULTS

The basic white noise-random watk modet (ARIMA (0,I,1)) was applied to 31 sets of data. It
adequatety fit f2 of 2l data sets for Wisconsin treatment plants and 6 of l0 data sets for
plants in Michigan.

Figure I shows data from Milwaukee, WI. The data are monthly average influent phosphorus
loadings, expressed as kg per day, for the Jones Island and South Shore plants combined.
There have been three interventions: the July L979 ban' the JuIy 1982 lift of the ban, and
the January 1984 reinstatement of the ban. The law requiring the 1979 ban eontained ar'sunsettt provision for a three-year trial period, during which the effects of the ban were to
be evaluated. The ban was abandoned, in accordance with the sunset provision of the statute,
because no definite benefits could be shown due to having the ban in force. The ban was
reinstated in 1984. This did not resuLt beeause scientific evidence showed that a ban was
necessary. It resulted from political activity by groups which believed that any method of
reducing phosphorus would ultimately be rewarded.

There was a steady downward trend from 1975 (month I = January 1975) untit about January 1982.
Obviously, taking simple arithmetic averages of intervals before and after the interventions
would be ineorrect because such an analysis would not account for this trend. The simple time
series model accounts for this trend when the shift is estÍmated, but this is accomplished
indirectly by giving more weight to data closest to the transition period.

The estimatÍon was done using the Bayesian estimation method under the condition that the
effect of the three interventions (1929 ban, 1982 ban-lift, and 1984 ban) were equal. For the
two bans, the transition periods are considered to include the month the ban went into effect
and four preceding months. For the ban lift, the transition period is the month of the ban
lift and the three following months.

The estimated shift was 1061 t7O2kg/day. AssumÍng 1,100,000 population served, the esti-
mated shift, on an annual per capita basis, was 0.152 kg/eap.-yr. This value differs from
Paltesen (1985). In that paper, the data record was shorter, only the ban and ban-lift were
considered; and these were estimated separately. It was estimated that the ban decreased
loadíng by 0.522 kg/cap-yr and the ban-lÍft increased toading by 0.193 kglcap -yr. The
average of these two values is 0.158 kg/cap-yv, which agrees reasonably with the updated
estimate presented above.

Figure 2 shows the data and the estimated load for Kalamazoo, Michigan. This example, with an
upward trend, is an interesting counterpoint to the downward trend of the Milwaukee data. The
m'odel was adequate for both data sets. The estimated shift was 0.8ff kg/cap-yr.

Saginaw, Michigan, shown in Figure 3, illustrates how missing data were handled by treating
them as though they were an intervention with no associated shift. The model forecasts, which
are level for a moving average model (e.9. ARIMA (0r1,1))rare used to fill in the missing
values. The estimated shift was 0.508 kg/cap-yr.

Figure 4 illustrates the seasonal model with data from Ann Arbor, Michigan. The estimated
shift was 0.58I kg/cap-yr.

In each of the Michigan examples, the transition period was from one month before the ban was
fully in effect to three months after any phosphate detergents could be sold. All data during
the transition period are ignored by the estimation procedure. The Ann Arbor data happen to
show a high influent P load for one month during this transition períod (actually the first
month that the ban was to have been futly in effeet). This is part of the seasonaf effect
that appears to coincide with the annuaL cycle of the student popuJ.ation in this university
city.

CONCLUSIONS

The magnitude of the decrease in influent sewage phosphorus level due to enforcement of bans
on phosphate detergents has been estimated for a number of treatment plants. The estimated
shift is 0.1 to 0.4 kglcap-yr.

EstÍmating the effect of environmental protection laws requires analyzing data that are in the
form of time series. Simply taking arithmetic averages for some interval before and after the
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Figure 1. Phosphorus Loading and Forecast for Milwaukee
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Figure 2. Phosphorus Loading and Forecast for Kalamazoo
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Month

Figure 3. Phosphorus Loading and Forecast for Saginaw
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Figure 4. Phosphorus Loading and Forecast for Ann Arbor
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lntervention is very like1y to be wrong sÍnce the variation is unJ.lkely to be random about a
fixed mean level. It will be biased if there is any trend (and often there is, even if only
from ¡andom drift). Even if the series happened to be stationa¡y, autocorrelation in the dáta
would distort all probability statements (confÍdence interval estimates, for example) derived
from simple averages.

Data which occur in the form of a time series need to be modeled with an appropriate time
series model. Our experience shows that this model does not need to be very complicated.

In the case of the phosphate detergent ban' there was a transition period to fulÌy implement
the ban. It was feasible to model the transition itself, so it was treated as a gap in the
data record. For a moving average model, which has been used in these examples, the forecasts
are Ieve1. The uncertainty associated with the estimated effect (the shift in level)
increases as the length of the transition gap increases.

A simple ARIMA (0r1,1) time series model, incorporating random walk and instantaneous error
effects, has been adequate for more than half of all data sets examined to date. Adding a
seasonal component has allowed a number of other data series to be fitted and analyzed.
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