

ACUTE TOXICITY OF ALKYLBENZENE SULFONATE TO HYALELLA AZTECA IN SEDIMENT: EFFECT OF MANIPULATION OF SEDIMENT ORGANIC CONTENT WITH HUMIC ACID

Toxicity Test Report

Submitted to:

Dr. Richard Sedlack The Soap and Detergent Association 475 Park Ave. South New York, NY 10016

Report Number B-393 October 1, 1993 TRAC Laboratories, Inc. 113 Cedar St. P.O. Bos 215 Denton, TX 76201

113 CEDAR STREET + P.O. BOX 215 DENTON, TEXAS 76201 817-566-3359 FAX 817-566-2698 TRAC LABORATORIES, INC.

2787 GULF BREEZE PARKWAY GULF BREEZE, FLORIDA 32561 904-932-2717 FAX 904-932-5058

1.0 INTRODUCTION

The objective of this study was to examine the behavior of a test system in relation to the addition of organic carbon. The test system consisted of a test organism (the amphipod *Hyallela azteca*) exposed for 48 h to the control substance (reference sediment) spiked with the test substance (alkyl benzene sulfonate). The organic carbon of the test system was manipulated by adding humic acid (Aldrich Technical grade, sodium salt).

All biological and analytical testing was conducted at TRAC Laboratories, Inc. 113 Cedar St., Denton, TX 76201.

2.0 MATERIALS AND METHODS

Documentation of sediment toxicity test procedures was per Good Laboratory Practices, 40CFR Part 792, August, 1989. This documentation is provided as part of the raw data (Appendix A).

2.1 Organisms

Organisms used in the tests were *Hyallela azteca* obtained from in-house cultures (Appendix B). Organisms used in the tests were 14 -20 d of age.

2.2 <u>Reference Sediment</u>

Reference sediment for the tests consisted of sandy loam topsoil obtained from a commercial supplier. The soil was sifted through a $1mm^2$ mesh sieve. Before being used in toxicity tests, the soil was tested for suitability as a reference sediment by exposing test organisms to it in a 10 d chronic growth and survival test.

2.3 Humic Acid and Reference Sediment

Procedures for preparing the humic acid/ABS mixtures in the reference sediment are provided in Appendix C. The toxicity tests were begun on 8/17/93 and ended on 8/19/93.

3.0 RESULTS AND DISCUSSION

3.1 Toxicity Tests

Results of toxicity tests are provided in Table 3.1. The toxicity test on reference sediment without humic acid showed acceptable control performance and a clear monotonic dose response. Tests in which humic acid was added to the reference

sediment did not show adequate control survival. Mortality in the controls of these tests was related to the amount of humic acid added, with nearly complete mortality occurring in the highest (1.2%) humic acid addition.

3.2 Analytical Testing

No interstitial water (IW) could be collected from the treatments containing humic acid. The IW samplers used in previous testing and specified in the experimental protocol were not effective in collecting IW. Sediment was collected from the test vessels and centrifuged at 3000 rpm for up to 1 h, but no clear separation of IW and sediment occurred. Sediment was pressure filtered (up to 80 psi) using large (245 mm diameter) filters of up to 5μ pore size, but no IW could be collected. Due to the poor organism performance in the treatments containing humic acid, and the difficulty in collecting IW samples from those treatments, further analytical testing of OW and sediment was not conducted.

Table 3.1. Results of toxicity tests on reference sediment/humic acid mixtures spiked with alkyl benzene sulfonate. Values are % survival (n = 30) after 48 h.

		Treatment (%	Humic Acid)	
Exposure (mg/Kg ABS)	0	0.6	1.2	3.0
Control	100	70	30	3
250	100	53	33	0
500	77	87	27	0
1000	10	37	20	0
2000	7	17	20	0
4000	0	0	3	0

2

REPORT PREPARED BY:

Patrick Downey Study Director Date

Statement of Quality Assurance

This study was reviewed by the Quality Assurance Officer to insure the methods, standard operating procedures, and protocol used in the performance of this study were followed. The final report is an accurate reflection of raw data.

BIOASSAY SECTION

Raw Data audit: Final report audit: Barney Venables, Ph.D. Date

Quality Assurance Officer

HYALELLA AZTECA ACUTE SEDIMENT TEST SURVIVAL DATA

B-393

TRAC ID TB- 4.22

Sponsor: SOAP AND DETERGENT ASSN.

Teşt Substance: Alkylbenzene sulfonate leference reduceren us/ No humin acid Age 14-30 Brood H. 049,050

_	R	# Or	ganisms	Alive	A	
Exposure (mg/Kg)	e p	0	24	48	i i	D e
CONTROL	1	15		15	v 	a d
CONTINUE	2	15.6		15	30	0
	1	1.5		15		
250	2	15		1.5	30	D
	1	1.5		120		
500	2	15		113	23	7
	1	15		2 (3)		
1000	2	1.5		1(14)	3	27
	1	15		194		
2000	2	15		a 15)	2	28
	1	15		0(3)		
4000	2	15		0(3)	0	30
	Load	MP				
Operator	Load Check	LT				

Comments

Begin	End
8/17/3	\$/14/43
1130	1200

Species: H. azteca

Exposure	Disso	olved Ox (ppm)	ygen
	0	24	48
Control	5.2	5.1	5.2
250	5.1	5.1	5.2
500	5.1	5.1	5.İ
1000	5.3	5.2	5.2
2000	5.7	5.4	5.2
4000	5.9	5.5	5.2
CONTROL DUF	5.3	5.1	5.5
Operator	LT /PD	प/m)	mplet
Time	1030	1000	09.45
Meter #	#1	#1	TI
	- 1		rI
	Tem	perature	°C
Exposure	Tem 0	perature	°C 48
Exposure Control	Tem 0 25.2	perature 24 25.7	°C 48 24.6
Exposure Control 250	Tem 0 25.2 25.2	24 25.7 25.7	°С 48 24.6 25.4
Exposure Control 250 500	Tem 0 25.2 25.2 25.2 25.2	24 25.7 25.7 25.4	РС 48 24.6 25.4 25.4 25.4
Exposure Control 250 500 1000	Tem 0 25.2 25.2 25.2 .25.2 .25.2	24 25.7 25.7 25.4 25.4	PC 48 24.6 25.4 25.4 25.7
Exposure Control 250 500 1000 2000	Tem 0 25.2 25.2 25.2 25.2 25.2 35.1	24 25.7 25.7 25.4 25.4 25.4 25.4	°С 48 24.6 25.4 25.4 25.7 25.7
Exposure Control 250 500 1000 2000 4000	Tem 0 25.2 25.2 25.2 25.2 25.2 35.1 25.2	24 25.7 25.7 25.4 25.4 25.4 25.4 25.3	PC 48 246 25.4 25.4 25.7 25.7 25.7 25.1
Exposure Control 250 500 1000 2000 4000 250 - dup	Tem 0 25.2 25.2 25.2 .25.2 .25.2 25.2 25.2	24 25.7 25.7 25.4 25.4 25.4 25.3 25.7	°С 48 24.6 25.4 25.4 25.7 25.7 25.7 25.7 25.1 25.2
Exposure Control 250 500 1000 2000 4000 250 - dup	Tem 0 25.2 25.2 25.2 25.2 25.2 25.2	24 25.7 25.7 25.4 25.4 25.4 25.3 25.7	r 9C 48 24.6 25.4 25.4 25.7 25.7 25.7 26.1 25.3
Exposure Control 250 500 1000 2000 4000 250 - dup Operator	Тет 0 25.2 25.2 25.2 25.2 25.2 25.2 LT/PD	24 25.7 25.7 25.4 25.4 25.4 25.3 25.7 LT/MD	Р PC 48 24.6 25.4 25.4 25.7 25.7 25.7 25.7 25.7 25.7 25.2 Мо/Ц
Exposure Control 250 500 1000 2000 4000 2000 4000 200 4000 200 4000	Tem 0 25.2 25.2 25.2 35.2 35.2 25.2 LT/PD 1020	24 25.7 25.7 25.4 25.4 25.4 25.4 25.3 25.7 LIT/MD 950	°С 48 24.6 25.4 25.4 25.7 25.7 25.7 25.7 25.7 25.1 25.2 Мо/Л 95D

A2

TRAC ID TO 422 Species: H. azte

Species: H. azteca

		рН		
Exposure	0	24	48	
Control	7.8	7.7	7.8	
250	7.8	7.7	7.7	
500	7.8	7.7	7.7	
1000	7.8	7.7	7.7	
2000	7.9	7.7	7.7	
4000	7.9	7.7	7.7	
2000. dur	7.8	7.8	7.6	
· · ·				
Operator	LT/PD	41m	mplet	
Time	1045	930	1000	
Meter #	1	#1	Ħ	
AND A DECIDENT AND AND A DECIDENT AN	Conductivity (µmhos/cm)			
Exposure	Co (μι	nductiv mhos/cn	ity n)	
Exposure	Сс (µ1 0	nductiv nhos/cn 24	ity n) 48	
Exposure Control	Са (µт 0 41С	nductiv mhos/cn 24 410	ity 1) 48 400	
Exposure Control 250	Cc (µr 0 41C 41C	nductiv mhos/cm 24 410 410	ity 1) 48 400 410	
Exposure Control 250 500	Cc (µr 0 41C 41C 41C	24 24 410 410 410	ity 1) 48 400 410 410	
Exposure Control 250 500 1000	Сс (µт 41С 41С 410 410	24 24 410 410 410 410 410	ity 1) 48 400 410 410 450	
Exposure Control 250 500 1000 2000	Сс (µт 41С 41С 41С 410 410 410	24 410 410 410 410 410 410 410	ty 48 400 410 410 450 450	
Exposure Control 250 500 1000 2000 4000	Сс (µт 41С 41С 410 410 410 410 410	24 410 410 410 410 410 410 410 41	ty 48 400 410 410 450 450 490	
Exposure Control 250 500 1000 2000 4000 570 - dup	Ca (µ1 - - - - - - - - - - - - - - - - - - -	24 410 410 410 410 410 410 410 41	ty 48 400 410 410 450 450 490 410	
Exposure Control 250 500 1000 2000 4000 570 - dup	Ca (µ1 0 410 410 410 410 410 410 410	24 410 410 410 410 410 410 410 41	ty 48 400 410 410 450 450 490 410	
Exposure Control 250 500 1000 2000 4000 570 - dup Operator	Сс (ут 10 410 410 410 410 410 410 410 410	24 410 410 410 410 410 410 410 41	ty 48 400 410 410 450 450 490 410	
Exposure Control 250 500 1000 2000 4000 570 - dup Operator Time	Сс (ут) 41С 41С 41С 41С 41С 410 410 410 410 410 410 410	24 410 410 410 410 410 410 410 41	ty 48 400 410 410 450 450 490 410 MP/LT 1015	

A3

HYALELLA AZTECA ACUTE SEDIMENT TEST SURVIVAL DATA

Sponsor: SOAP AND DETERGENT ASSN.

Test Substance: Alkylbenzene sulfonate

0.6 To Organic vachen as hurse Age 14-30 & Brood H044- HOGO

	R	<u># 0</u>	rganisms	Alive	A		
(mg/Kg)	p	0	24	48	i	e	
CONTROL	1	15		13	v e	a d	
CONTINUE	2	15		8	21	9	inged
	1	15		90			adultion
250	2	15		70	1626-	14	prin
500	1	1.5		12		<u></u>	
500	2	15		14	26	4	
1000	1	15		80			
1000	2	15		39)	11	19	
0000	1	15		1031			
2000	2	15		43	_ک	25	
4000	1	15		OT	£2.		
4000	2	15		0(15)	0	30	
	Load	FD			and the second second		
Operator	Load Check	lT					

Comments

End Begin

SEDIMENT TEST CHEMISTRY

Species: H. azteca

Exposure	Disso	olved Ox (ppm)	ygen
	0	24	48
Contro!	5.3	5.1/	4.4
250	5.4	5.1	4.5
500	5.5	5.1	4.6
1000	5.4	5.1	4.7
2000	5.5	5.1	4.9
4000	5.7	3.3/	4.4
500- dup	5.9	5,0	3.9
Operator	LT/PD	LT/PD	mpjut
Time	1030	०ए०।	950
Meter #	ヨ1	#	F 1
	Tem	perature	°C
Exposure	0	24	48
Control	0 25.0	24 25.7	48 25,8
Control 250	0 25.0 25.0	24 25.7 25.7	48 25,8 25,4
Control 250 500	0 25.0 25.0 25.0	24 25.7 25.7 26.0	48 25,8 25,4 25,9
Exposure Control 250 500 1000	0 25.D 25.D 25.D 24.6	24 25.7 25.7 26.0 25.4	48 25.8 25.4 25.9 25.7
Exposure Control 250 500 1000 2000	0 25.0 25.0 25.0 24.6 24.7	24 25.7 25.7 26.0 25.4 25.8	48 25.8 25.4 25.9 25.7 25.5
Exposure Control 250 500 1000 2000 4000	0 25.0 25.0 25.0 24.6 24.7 24.8	24 25.7 25.7 26.0 25.4 25.8 26.0	48 25.8 25.4 25.9 25.5 25.5 25.6
Exposure Control 250 500 1000 2000 4000 Control-dup	0 25.0 25.0 24.6 24.6 24.7 24.8 25.2	24 25.7 26.0 25.4 25.8 26.0 26.0	48 25.8 25.6 25.9 25.5 25.5 25.6 25.6
Exposure Control 250 500 1000 2000 4000 Control-dup	0 25.0 25.0 25.0 24.6 24.7 24.8 25.2	24 25.7 26.0 25.4 25.8 26.0 26.0	48 25.8 25.6 25.7 25.5 25.6 25.6
Control 250 500 1000 2000 4000 Control-dup	0 25.0 25.0 25.0 24.6 24.6 24.7 24.8 25.2 25.2	24 25.7 25.7 26.0 25.4 25.8 26.0 26.0 26.0	48 25.8 25.6 25.7 25.5 25.6 25.6 25.7
Exposure Control 250 500 1000 2000 4000 Connor-dup Connor-dup	0 25.0 25.0 24.6 24.6 24.7 24.8 25.2 LT /PD 1020	24 25.7 25.7 26.0 25.4 25.8 26.0 26.0 26.0 26.0	48 25.8 25.6 25.7 25.5 25.6 25.6 25.7 25.7

* Reading in Rep 2 is 4.2

A5

SEDIMENT TEST CHEMISTRY

TRAC ID TB-423

Species: H. azteca

_		pН		
Exposure	0	24	48	
Control	8.3	8.1	8,2	
250	8.3	8.1	8.2	
500	8.3	8.1	8.2	
1000	8.3	8.1	8.2	
· 2000	8.3	8.0	8.2	
4000	8.3	8.0	8.2	
CONTROL - duc	8.3	8.2	8.2	
Operator	LT/PD	u/ro	mp/LT	
Time	1045	930	1000	
Meter #	#1	<i>#</i> ($\pi_{ }$	
	Conductivity (µmhos/cm)			
Exposure	С. (µ1	nductivi nhos/cri	ity ı)	
Exposure	Сс (µт 0	nductivi nhos/cn 24	ity 1) 48	
Exposure Control	Сс (µт 0 5°СО	nductivi nhos/cm 24	ity 1) 48 <i>GIO</i>	
Exposure Control 250	Са (µт 0 5700 5700	nductivi mhos/cm 24 5370 5370	ity 1) 48 600	
Exposure Control 250 500	Сх (µт 0 5700 5700 5700	nductivi mhos/cm 24 530 530 530	ity 1) 48 610 600	
Exposure Control 250 500 1000	Сл (µт О 5700 5700 5700 5700	nductivi mhos/cm 24 550 550 550 550	ity 1) 48 600 600 650	
Exposure Control 250 500 1000 2000	Са (µт 5700 5700 5700 5700 5700	nductivi mhos/cm 24 550 550 550 550 550	ity 1) 48 600 600 650 600	
Exposure Control 250 500 1000 2000 4000	Са (µт 5700 5700 5700 5700 5700 5700	24 5370 5370 5370 5370 5370 5370 5370	ity 1) 48 600 600 650 600 610	
Exposure Control 250 500 1000 2000 4000 2000-dup	С. (µт о 5700 5700 5700 5700 5700 5700	24 530 530 530 530 530 530 530	ity 48 610 600 650 600 610 610	
Exposure Control 250 500 1000 2000 4000 2000-dup	Са (µт о 5700 5700 5700 5700 5700	24 530 530 530 530 530 530 530	ity 48 610 600 650 600 610 610	
Exposure Control 250 500 1000 2000 4000 2000-du p Operator	Са (µт 0 500 500 500 500 500 500 500	24 550 550 550 570 570 570 570 570	ty 48 610 600 600 650 600 610 610 610	
Exposure Control 250 500 1000 2000 4000 2000-du p Operator Time	Са (µт 0 500 500 500 500 500 500 500 11.05	24 550 550 550 550 550 550 550 550	ty 48 610 600 600 650 600 610 610 610	

Ale

HYALELLA AZTECA ACUTE SEDIMENT TEST SURVIVAL DATA

TRAC ID ______

Sponsor: SOAP AND DETERGENT ASSN.

Test Substance: Alkylbenzene sulfonate 1.2 7. Ciganie carbon as hurrie acie

Age _111-300

Brood H.C.19, H.C.50

	R	<u># O</u>	ganisms	Alive	A	
(mg/Kg)	e p	0	24	48	i	D e
CONTROL	1	15		56	v e	a d
CONTROL	2	15		48	9	21
0.50	1	15		4 Ŧ)		
250	2	15		60	10	20
	1	15		60		
500	2	15		2 (12'	8	22
	1	15		36		
1000	2	15		3(12)	6	24
	1	15		2(1)		
2000	2	15		49	6	24
	1	15		1(14)		
4000	2	15		0(4)	/	29
	Load	LT				
Operator	Load Check	PD				

Comments

Begin	End
	•

At

SEDIMENT TEST CHEMISTRY

Species: H. azteca

Exposure	Disso	olved Ox (ppm)	ygen
	0	24	48
Control	5.4	4.8	4.4
250	5,2	4.4	3.6
500	4.9	4.4	3,1
1000	5.0	4.0	3.2
2000	5.0	4.0	3.3
4000	4.8	4.6	3.4
2000- dup	5.2	4.8	3.5
Operator	LT/PD	LT/MD	mpla
Time	1030	1000	1000
Meter #	-#1	-+i-1	#I
	,	1	
	Tem	perature	°C
Exposure	Tem 0	perature 24	°C 48
Exposure Control	Tem 0 25.2	24	°C 48 25,4
Exposure Control 250	Tem 0 25.2 25.2	24 21.4 21.8	°C 48 25,4 25,4
Exposure Control 250 500	Tem 0 25.2 25.2 25.2 25.0	24 21.4 25.9 25.9	°C 48 25,4 25,4 25,5
Exposure Control 250 500 1000	Tem 0 25.2 25.2 25.2 25.0 25.1	24 21.4 25.9 25.9 26.0	°C 48 25,4 25,4 25,5 25.6
Exposure Control 250 500 1000 2000	Tem 0 25.2 25.2 25.0 25.1 25.3	24 21.4 21.4 25.9 25.9 25.8	°C 48 25.4 25.4 25.5 25.6 25.6
Exposure Control 250 500 1000 2000 4000	Tem 0 25.2 25.2 25.0 25.1 25.3 25.5	24 21.4 21.4 25.9 25.9 24.0 25.8 26.0	°C 48 25,4 25,4 25,5 25,6 25,6 25,9 26.0
Exposure Control 250 500 1000 2000 4000 2000 - dup	Tem 0 25.2 25.2 25.0 25.1 25.3 25.5 25.6	24 21.4 21.4 25.9 26.0 25.8 26.0 25.8	°C 48 25,4 25,4 25,5 25,6 25,6 25,9 26,0 26,1
Exposure Control 250 500 1000 2000 4000 2000 - dup	Tem 0 25.2 25.2 25.0 25.1 25.5 25.6	24 21.4 21.4 25.9 25.9 26.0 25.8 26.0 25.8	°C 48 25.4 25.4 25.5 25.6 25.6 25.9 26.0 26.1
Exposure Control 250 500 1000 2000 4000 2000 - dup Operator	Тет 0 25.2 25.2 25.0 25.1 25.3 25.5 25.6	24 21.4 21.4 21.4 21.8 25.9 94.0 25.8 26.0 25.8	°С 48 25.4 25.4 25.5 25.6 25.9 26.0 26.1 26.1
Exposure Control 250 500 1000 2000 4000 2000 - dup Operator Time	Tem 0 25.2 25.2 25.0 25.1 25.3 25.5 25.6 UT/PD 1020	24 21.4 21.4 21.4 21.4 21.4 21.4 21.7 21.8 21.0 21.8 21.0 21.8 21.0 21.8 21.0 21.8	°C 48 25,4 25,4 25,5 25,6 25,6 25,9 26,0 26,1 26,1 1005

,78

SEDIMENT TEST CHEMISTRY

TRAC ID 76-424

Species: H. azteca

		pН		
Exposure	0	24	48	
Control	8.6	8.4	8.5	
250	8.6	8.4	8,5	
500	8.6	8.3	8.5	
1000	5.7	8.4	8.5	
2000	8.6	8.4	8.5	
4000	8.6	8.3	8.5	
2000-dup	8.6	8,4	8.5	
Operator	LT/PD	LT/PD	mplet	
Time	10.45	940	1012	
Meter #	=	#1	Ħ	
	Conductivity (µmhos/cm)			
Exposure	С. (µ1	nductivi nhos/cn	ity າ)	
Exposure	Сс (µ1 0	nductiv nhos/cn 24	ity ח) 48	
Exposure Control	Са (µ1 0 540	onductivi mhos/cm 24 7 ຫນ	ity 1) 48 85D	
Exposure Control 250	Сх (µ1 0 540 540	onductivi mhos/cm 24 7 งบ 7 กว	ity 1) 48 <u>85D</u> 80C	
Exposure Control 250 500	Сх (µ1 0 590 590 600	nductivi nhos/cn 24 7 vv 7 vv 7 vv 7 vv	ity 1) 48 85D 80C 810	
Exposure Control 250 500 1000	Сх (µ1 0 540 540 540 600 600	nductivi nhos/cn 24 7 συ 7 συ 7 συ	ity 1) 48 85D 800 810 900	
Exposure Control 250 500 1000 2000	Cx (µ) 0 540 540 540 600 600	24 700 700 700 700 700 710	ity 1) 48 85D 800 810 900 890	
Exposure Control 250 500 1000 2000 4000	Cx (4) 0 590 590 600 600 600	24 700 700 700 700 700 710 710	ty 1) 48 85D 800 810 900 890 890	
Exposure Control 250 500 1000 2000 4000 2000 - dup	Cx (4) 0 590 590 600 600 600 600 600	24 700 700 700 700 700 710 710 710	ty 1) 48 85D 800 810 900 890 890 800	
Exposure Control 250 500 1000 2000 4000 2000 - dup	Cx (4) 0 590 590 600 600 600 600 600	24 700 700 700 700 700 710 710 710	ty 1) 48 85D 800 810 900 890 890 800	
Exposure Control 250 500 1000 2000 4000 2000 - dup Operator	Cx (4) 0 590 590 600 600 600 600 600 600	nductivi mhos/cm 24 700 700 700 700 710 710 710 700	ty 1) 48 85D 800 810 900 890 890 800	
Exposure Control 250 500 1000 2000 4000 2000 - dup Operator Time	Cx (µ) 0 590 590 600 600 600 600 600 600 600 600	24 700 700 700 700 700 710 710 710 700 1010	ty 1) 48 85D 800 810 900 890 890 890 800	

A9

HYALELLA AZTECA ACUTE SEDIMENT TEST SURVIVAL DATA

Ŧ

Sponsor: SOAP AND DETERGENT ASSN.

Jo Cryanie cartin a humie acil Age 14-2011 Brood H049; 4050 Test Substance: Alkylbenzene sulfonate

F	R	# Organisms Alive			A	D
(mg/Kg)	e p	0	24	48	i	e
CONTROL	1	15		107	v e	a d
CONTROL	2	15		0(15)	1	29
	1	1.5		0(15)		
250	2	15		005	0	30
	1	15		05		
500	2	15		clist	0	30
	1	15		0(12)		
1000	2	15		0(13)	0	30
	1	15		05		
2000	2	15		0 (5)	0	30
	1	15		0(13)	E.	
4000	2	15		0(10)	0	30
	Load	mo				
Operator	Load Check	iT				

Comments

Begin	End
3/17/43	3/59/43
11:30	1600

SEDIMENT TEST CHEMISTRY TB-425

TRAC ID

Species: H. azteca

Exposure	Disso	lved Ox (ppm)	ygen
	0	24	48
Control	5.2	4.0	3.3
250	5.3	4.4	3.4
500	5.4	4.4	2.2
1000	5.3	3.2*	3,2
2000	5.2	4.1	2.9
4000	5.3	3.8	3.2
CONTROL- dup	5.4	4.1	3.0
Operator	LT/DD	LT/PD	MTP/LT
Time	1030	1000	10:00
Meter #	1		1
	1	77	21
	Tem	≠1 perature	°C
Exposure	Tem 0	≠ perature 24	°C 48
Exposure Control	Tem 0 24.6	≠ perature 24 25.	°C 48 ∑∑.]
Exposure Control 250	Tem 0 24.6 24.6	≠1 perature 24 25.1 25.4	ルイ °C 48 ぶ.1 ふご、ス
Exposure Control 250 500	Tem 0 24.6 24.6 24.6	≠ perature 24 25.1 25.4 25.4 24.8	2×7 ℃ 48 25.1 25.2 25.4
Exposure Control 250 500 1000	Tem 0 24.6 24.6 24.6 24.6	≠ perature 24 25.1 25.4 24 24 24 25.4 24 25.5	2×7 ℃ 48 35.1 25.2 25.4 25.5
Exposure Control 250 500 1000 2000	Tem 0 24.6 24.6 24.6 24.6 24.6 24.6	≠ perature 24 25.1 25.4 24.8 25.5 25.9	2×7 ℃ 48 35.1 25.2 25.4 25.5 25.5
Exposure Control 250 500 1000 2000 4000	Tem 0 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.8	≠ perature 24 25.1 25.4 24.8 25.5 25.9 26.4	27 90 48 25.1 25.2 25.4 25.5 25.5 25.9
Exposure Control 250 500 1000 2000 4000 250 - Jup	Tem 0 24.6 24.6 24.6 24.6 24.6 24.6 24.8 24.3	perature 24 25.1 25.4 $2425.425.525.926.425.5$	27 °C 48 35.1 25.2 25.4 25.5 25.5 25.9 25.1
Exposure Control 250 500 1000 2000 4000 250 - Jup	Tem 0 24.6 24.6 24.6 24.6 24.6 24.6 24.8 24.3	\Rightarrow perature 24 25.1 25.4 25.4 25.5 25.9 26.4 25.5	27 90 48 25.1 25.2 25.4 25.5 25.5 25.9 25.1
Exposure Control 250 500 1000 2000 4000 250 - Jup Operator	Тет 0 24.6 24.6 24.6 24.6 24.6 24.6 24.8 24.3 LT/PD	= perature 24 25.1 25.4 25.4 25.5 25.9 26.4 25.5 =	27 °C 48 25.1 25.2 25.4 25.5 25.5 25.9 25.1 25.1 25.1 25.1
Exposure Control 250 500 1000 2000 4000 250 - Jup Operator Time	Тет 0 24.6 24.6 24.6 24.6 24.6 24.6 24.8 24.3 LT /PD 1020	= perature 24 25.1 25.4 25.5 25.9 26.4 25.5 25.5 25.5 25.5 25.5	27 °C 48 25.1 25.2 25.4 25.5 25.5 25.9 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.2 25.1 25.2 25.1 25.2 25.1 25.2 25.2 25.1 25.2 25.2 25.2 25.1 25.2

* Reading in Rep 2 is 4.2 * Rending in Rep2 is 3.5, 48 Arros 500 Exposure!

SEDIMENT TEST CHEMISTRY

7 *

• •

. .

Species: H. azteca

-	pН			
Exposure	0	24	48	
Control	9.0	8.8	8.9	
250	8.9	8.7	8.9	
500	9.1	8.8	8.9	
1000	9,1	8.8	8,9	
2000	9.0	8.8	8.9	
4000	9.0	3.7	809.0	
500- dup	9.0	3.5	8.9	
Operator	IT/PD	LT/PD	mplat	
Time	1045	940	1015	
Meter #	#]	+1	#	
Exposure	Conductivity (µmhos/cm)			
LAPOSUIC	μ (μι	nhos/cm	ר)	
	ایل) 0	nhos/cm 24	n) 48	
Control	0 800	nhos/cm 24 790	1) 48 1400	
Control 250	0 800 750	790	1) 48 1400 1500	
Control 250 500	0 800 750 950	nhos/cm 24 990 990 1190	1) 48 1400 1500 1600	
Control 250 500 1000	0 800 750 950 700	1190 190 190 1190 1100	1) 48 1400 1500 1600 1450	
Control 250 500 1000 2000	0 800 750 950 900 890	1190 1190 1190 1190 1150	1) 48 1400 1500 1600 1450 1490	
Control 250 500 1000 2000 4000	0 800 750 950 900 890 850	nhos/cm 24 990 990 1190 1100 1150 1150	1) 48 1400 1500 1600 1450 1490 1450 1450	
Control 250 500 1000 2000 4000 1000 - dup	0 800 750 950 950 890 890 890	nhos/cm 24 990 990 1190 1190 1150 1050 1050	1) 48 1400 1500 1600 1450 1490 1450 1400	
Control 250 500 1000 2000 4000 1000 - dup	0 800 750 950 900 890 850 890	nhos/cm 24 990 990 1190 1190 1150 1050 1050	1) 48 1400 1500 1600 1450 1490 1450 1400	
Control 250 500 1000 2000 4000 1000 - dup Operator	0 800 750 950 900 890 890 250 1/PD	nhos/cm 24 990 990 1190 1190 1190 1050 1050 1050	1) 48 1400 1500 1600 1450 1490 1450 1400 1400 mp/i	
Control 250 500 1000 2000 4000 1000 - dup Operator Time	0 <i>800</i> <i>750</i> <i>950</i> <i>950</i> <i>890</i> <i>890</i> <i>890</i> <i>1105</i>	24 990 990 1190 1190 1000 1050 1050 1050	1) 48 1400 1500 1600 1450 1490 1450 1400 1400 mplin 1030	

DIE 3/19/93 mp

Rep 2 13

٠

C W.O 8/15/93

A12

SPONSOR_SDA TRAC ID TB-432 473 4134 435 PD 5/16/93 Humic acid spike Spile 7kg of sectionen to taiget volues of 0.6, 1.2, 4370 OC wing bediech. Va salt of humic acid = 38% OC = 1906/2.639 humic acid (HA) y HA to aili GOC niede <u>7,t</u> 0.006 . ECX 7 0009 7.67. 42.0 X 2.6 3 = 420 = 110.4 ,012 × 7000 .2 = 200-221 = 34 210 × 2.63 3 .03X 20009 = 552 = 210 =276 X 2

A13

TRAC ID 13-472 473 434 425 SPONSOR 5DA Capacation of 100g/L ASS alway D 3/19/4 talance calibration: W. of stel = 20.09 Calance swilling = 20.09 259 ABS starry weighed into 100 ml Transferre for 250 ml l'aumetric flert. After hubbles had settled, floret was berker. prought to volume. Ford 250 on l thet used to prepare TE- 423. & TE-424, a second stock was prepared for TB 435. J. hirs and insufficient amount of first stack to prepare all 3 sits of Afriked in posicies. A14

DEVIATIONS FROM PROTOCOL

TRAC 1076-432 423 424 435 SPONSOR SPA DATE <u>\$/16/93</u> Messure amount of regaine carkon rat known a time of sedence spiking w/ know aced. DEVIATION:

Analytice results from laborating not available. **REASON FOR DEVIATION:**

Sectionals are spiked to the taiget antration CORRECTIVE ACTION: of organic carkon as if no background existed Bachground a probably low (~1-33). Humie acid spikes will still provide æ High " thelien" & Low objanie cackon matuces. PM 8/16/93 A15

GENERAL DATA SHEET TRAC ID 76-423, 4,24 4.25 SPONSOR SDA 8/17/43 Hunic acid apprend to go into totation into OW upon addition of OW. O lays of dashily stained Ow formed (~ 2 cm) a have the sectionent. To produce a uniform OU the OU was quilly stirric to was the hume and layer the to Ca. The miging The the entre C'a' column a very dark color, especially in the 3% him and the. animal will be difficult to see. 5/15/43 Collection of rediment samples for centralization: Siphoned OW from beaker until 2 con overliging water remission, This OW used for C'ld' sample distribution of siphoned off along w/a small he shalinen OW siphoned off along w/a small around of victiment antil no OW rumaining -

A-16

DEVIATIONS FROM PROTOCOL

TRAC ID TG 423 414, 415	SPONSOR SDA
DATE 8/18/43	-
DEVIATION: IN sumplies	allected using achtropingation

I W will not pinetente litter surrous ling fettiel glass end af I W will not pinetente litter surrous ling fettiel glass and af I W samplins in 1sto. W/ hume accid Samplins in experiend afo humic acid (16-422) collected adispurte amounts & IW.

attempt to collect I a by centry agates CORRECTIVE ACTION:

DEVIATIONS FROM PROTOCOL SPONSOR SDA TRAC ID TB- 423. 494 475 DATE <u>\$/19/93, 5/20/9</u>3, 8/23/93 DEVIATION: I W hainfille canno lie collected to by contrapupation prom Assimptor w/ humic acid added.

REASON FOR DEVIATION:

a clear separation of I 4 & section did not develop.

CORRECTIVE ACTION: 0 - Try pressur filtration through 140 mm D - Tried pressure filleration through 1.3 fe fitter 1.2 / - No IW allecte Rivalt. 5 µ fitter Tried pressure filtra Therey A18

DEVIATIONS FROM PROTOCOL

TRAC 12 7/2 423, 424, 425	SPONSOR_SDA
DATE <u>3/14/43</u>	
DEVIATION: No IN same containing humic	ilis allieted from in possions acid.

REASON FOR DEVIATION:

adaquité sainflis volume of acceptible I le could're le callicté from expresses containing buinic acc.

CORRECTIVE ACTION:

4/4

DUTIES OF PERSONNEL

TEST SUBSTANCE: Branched detergent slurry; alkylbenzene sulfonate (ABS; T-1343).

TRAC ID: TB-422, TB-423, TB-424, TB-425

SPONSOR: Soap and Detergent Association

STUDY DIRECTOR: Patrick Downey

QUALITY ASSURANCE OFFICER: Barney Venables

LABORATORY ASSISTANT: Melody Pride, Nhung Tran

TEST SYSTEM: Hyallela azteca in reference sediment + humic acid and dechlorinated tap water.

STUDY DIRECTOR: Patrick Downey (PJD)

c.

- 1) Responsible for conduct of all phases of the test.
- 2) Coordinate toxicity and analytical section.
- 3) Supervise laboratory assistants.
- 4) Prepare data sheets, master checklist and test protocol.
- 5) Prepare ABS stock solutions.
- 6) Supervise and assist in spiking sediment with ABS.

7) Supervise and assist in preparation of test vessels including placement of IW samplers and addition of OW.

8) Supervise and assist in test startup, including initial *in situ* measurements, addition of organisms, and collection of IW, OW and sediment samples.

9) Supervise and assist in collection of IW, OW and sediment samples.

A21

10) Transfer custody of samples to analytical section for analysis.

11) Supervise and assist in maintenance of test.

12) Supervise and assist in ending of test.

13) Preparation of final report.

QUALITY ASSURANCE OFFICER: Barney Venables (BJV)

- 1) Conduct QA reviews of test.
- 2) Submit QA reports to Study Director.

LABORATORY ASSISTANT: Melody Pride (MPT), Nhung tran (LT)

Melody Pride:

1) Maintain H. azteca culture

2) Sift topsoil through 1 mm sieve to produce TRAC reference sediment, Lot #1.

3) Prepare organisms for testing.

4) Assist in sediment exposure preparation.

5) Assist in startup of test (addition of overlying water, addion of organisms to test vessels, record initial *in situ* measurments.

6) Assist in test maintenance.

Nhung Tran:

1) Assist in sediment exposure preparation.

2) Assist in startup of test (addition of overlying water, addion of organisms to test vessels, record initial *in situ* measurments.

3) Assist in test maintenance.

A22

OPERATOR DATE ACTIVITY BT Clean IW samplers and assure that they are functioning properly. BT Homogenize and air dry reference sediment 22 d BT Remove neonates from H. azteca culture. 14 - 21 d BT Remove neonates from culture and reserve for testing. BT Prepare glassware for tests. BT Prepare glasware for TOC and DOC samples. Day 1 Prepare ABS stock. BT Approval test of protocol by Study Director upon review by QA officer. Study officially begins. Prepare sediment-humic acid mixtures (0.6, 1.2, 3% organic carbon) Day 1 Collect and submit samples for analysis of cation exchange capacity and particle-size distribution. Prepare sediment exposures. Place sediment in beakers with IW samplers. Introduce OW. QA review. QA report. Day 2 Take initial in situ measurements. Introduce organisms to test vessels. Take IW, OW and sediment samples for TOC, DOC, ABS. Transfer custody of IW, OW and sediment samples to analytical section. QA review. Day 3 Take 24 h in situ measurements and make observations of test. Day 4 Take final in situ measurements. Remove organisms and make final counts. QA review. QA report.

MASTER CHECKLIST

BT = before test.

O See write up for I a sample

423

MASTER CHECKLIST

DATE	ACTIVITY	OPERATOR
AT	Collate data from toxicity test.	
AT	Collate analytical results.	
AT	Conduct data analysis.	
AT	Begin preparation for second series of tests.	

AT = after test

1

Ň

A24

· · .

TRAC ID 3 425 SPONSOR Dregamisin court workshet 3 To humicació Exposine 500-1 0 2 11 ANT 11 111 ANT 114 ANT 11 114 ANT 11 111 ANT (1000-1 0 0 0 £ Jecu-1 0

A25

1

TRAC ID 17-425

SPONSOR SDA

390 humiz Acid spike

Exposure Count Dead Africe Dead Africe Dead Africe HT HTT IIII DSC-1 HT HTT IIII DSC-2 HT HTT IIII
A26

.

.

TRACID TB-424	SPONSO	r SDA
Organism count Wi	rksheet	、 、
1.2 % humz	acid sp	ilce
Exposure	Count	
C - 1	Alue	Htt 1
C-2	111	but in
250-1	1111	141 11
250-2	ITT 1	ii ii
500-1	1411	111
500-2	11	itt the 11
1000-1	1/1#	HAT HAT I
1000-2	l(] '	HTT 1111
2000-2	li	un carri
2000 - 1	111/	411 1/11
4000-1	1	With the litt
4000-2		(LHT 2411 11/1
]	•

TRAC ID TB-422

SPONSOR<u>SDA</u>

Organism Count Worksheet No Numic acid

Lount It HT

HIT LAN LAT

LHT LHT LHT UHT ILH LHT

144411 ---->3Dend

HAT IM 11

-00	
500:1	
2	
.)	

1200-1	
1000-1	$11 \rightarrow 130ea$
1000:2	1 14 DEAL
1°)	1

A23

2000=1 -----> 14 Dend 20003

----> 14 DeAd

40001 40000

15 DEAD 15 DEAD

GENERAL DATA SHEET TRAC ID 3-4,23 SPONSOR_SDA Organium count worksheet 0.675 human acid spike (ban to C-1 C 2 44 1111 250-1 IJ A D UHT I ż 500 -1 11 11 11 11 11 11 11 **G** : -7 111 1 1000-1 1111 441 111 - -2 2000-1 HTT GHT III 1 111 W111 i ااا سلاسل 4000--1 LATT CLATHIN

A29

H. AZIECA		
P. PROMELAS	DRY	WT.

TRAC ID	<u> TB-46</u>	27	N = number of fish weighed .			
Conc.	Pan	Pan wt.	Pan + fish	Difference	N	Wt/fish (mg)
UNTI	50	1.30730	1.31103	.00373	10	373
2	51	1.34315	1.34677	,00362	10	, 36 Z
.3_	52	1.3.32.29	1.33613	00384	10	,384
TRAC,	.5.3	133706	1.34012	.00306	io	. 306
2	54	1.32400	1.32714	.00314	10	, 314
3	55	1.31918	1.32579	N661	10	.661 *
		!				
				·		
			<u>**</u>			
				 ,		
ļ,						

	Date	Time	' <u>Operator</u>
Tare weights	8-11-93	1521	mp
Fish placed in oven	8-11-93	1630	LT
Fish removed from oven	8-12-93	1300	LT
Final weights	5-12-93	1510	<u> </u>
Fish preserved: Yes	No	Ch	ecked By:

A.30

7 Nole:

*

There were some sediment and debris that dired along w/ organism and may cause this larger weight. Tried to scrap out as much of schment as possible w/out damaging the direct

										11	7		
	TOXIC	ITY 1	TEST	SUR	VIVAI	-	SF	PECIE	S	H cy	Tecn		
	TRAC II	D_TO	34	27			SP	ONSO	R	RAC	-		
n J	SAMPLI	E ID /%	UN TK	AC 2	firme BEC	i Sa , Sa <u>SIN</u>	e A	3E	121	,]	BROOL)	
U Cr.		-	DAI	ΓE									
				E 								1	
		Conc.	R E		100		Numbe	r Alive				A L	D E
		(%)	P	0	24	48	72	96	120	144	168	Ý	A D
	L	INT	1	10	$\frac{10}{10}$		1					E	16
			2	10	10								
			4		10								
			1	10	10								ng gina.
	11	(AC	2	10	9								
	l l		3	10	10								
			4		j								
			1										
			2				-						
			3										
			4	<u> </u>			<u> </u>					<u> </u>	
			1										2
			2										
			4									and the set	<u>, , , , , , , , , , , , , , , , , , , </u>
			1										
			2										
			3										
			4					_					
			1										
			2										
			3										
			4	<u> </u>			 				1		
		COUN	T							1			

LOADING CHECK _____

RENEWAL

. .

-

COMMENTS:

A31

DISSOLVED OXYGEN AND TEMPERATURE

TRAC ID T.B-427 Species TRAC

	Conc		Find	DI	SSOLVED C	XYGEN (mg/	L)		
	(%)	10 d	24	48	72	96	120	144	168
.	с								
N	INT	1.2							
	TRAC	2.9							
IA			h						
L								_	
	с								
F									
I N									
A L									
	Conc				TEMPERA	TURE (°C)			
	(%)	0	24	48	72	96	120	144	168
Ţ	С								
N									
T									
I A									
L								1	
	С								
F I								•	
N									
Ĺ									
I = F	= Initial = Final	I	F/I	FЛ	F/I	F/I	FЛ	FЛ	F/I
0	perator								
	Time								

A32

pH AND CONDUCTIVITY

TRAC ID T.B. 437

Species	H artice

	Conc	Final pH								
	(%)	100	24	48	72	96	120	144	168	
Ţ	с									
N	UNT	7.2								
T	TRAC	7.0								
I A										
L										
	С									
F										
N										
A L								 		
		國黨								
- 1	Conc	CONDUCTIVITY (umhos/cm)								
	(%)			C	CNDUCITVI	IY (umhos/cm	·)			
	(%)	0	24	48	72	96	120	144	168	
I	(%) C	0	24	48	72	96	120	144	168	
I N I	(%) C	0	24	48	72	96	120	144	168	
I N I T	(%) C	0	24	48	72	96	120	144	168	
I N I T I A	(%) C	0	24	48	72	96	120	144	168	
I N I T I A L	(%) C	0	24	48	72	96	120	144	168	
I N I T I A L	(%) C	0	24	48	72	96	120		168	
I N I T I A L I = F =	(%) C	0	24 F/I	48 F\I	72 F/I	96 F/I	120 F/I	144	168	
I N I T I A L I = F =	(%) C Initial Final perator	0	24 F/I	48 F\I	72 F/I	96 F/I	ј 120 F/I	144	168	
I N I T I A L I = F = Op	(%) C = Initial = Final perator Time	O	24 F/I	48 	5ND0C11V1 72 	96 F/I	ј 120 F/I	144	168	
I I I I I I I I I I	(%) C = Initial = Final perator Time ample	I	24 F/I	48 	5ND0C11V1 72 	96 F/I	7 120 F/I	144	168	

A33

APPENDIX B: Organism Culture Procedures

SOP 105.1: CULTURE PROCEDURE FOR HYALELLA AZTECA

OBJECTIVE:

To provide a healthy culture of *H. azteca* suitable for testing.

METHOD:

A. Handling Tools

- 1. 5mm glass tubing cut into 15 cm sections, fire polished on both ends
- 2. Small pipette bulb.
- 3. Wash bottle filled with culture water (DeCl-Dechlorinated tap water).

B. Substrate

- 1. 1mm mesh Nytex(TM) screen cut into 10 cm squares.
- 3. Use 2 squares per jar.

C. Culture Jars

- 1. 1 gallon (3.785L) glass jars.
- 2. Acid and acetone rinse new glassware before using.
- 3. Fill each culture jar with 1L of DeCl and make a mark on the side of the jar to avoid measuring 1L at each renewal.

D. Feeding

1. Feed each jar (60 organisms) 1X10⁷ cells Selenastrum capricornutum + 10 mL YCT three times per week.

E. Starting A Culture

- 1. Put 1L DeCl and 2 squares of 1mm mesh Nytex(TM) screen into jar.
- 2. Add 10ml YCT and $1X10^7$ cells Selenastrum capricomutum.
- 3. Place 60 H. azteca into each jar.

4. Aerate the culture jar <u>gently</u>. Aggressive aeration leads to increased evaporation and "floaters"-animals trapped in the surface tension of the water.

F. Harvesting Neonates

Neonates are harvested once a week from each culture jar. This provides a brood of neonates each week that are 0-7 days old. These neonates are then reared to provide test organisms in known age lots of 7-14 days old or 14-21 days old. This method can be modified to provide a smaller age span, for example, harvesting can be done twice a week which yields organisms in a 3 or 4 day window. Fewer young are harvested each time but the window is tighter.

- 1. Remove the 2 squares of 1mm mesh screen, shaking gently to dislodge all of the organisms, and place the squares into a rinse of DeCl, set aside.
- 2. Gently pour contents of mature culture through 1mm mesh sieve, this traps the adult *H. azteca* but allows the neonates to pass through, and into a collecting pan (a shallow enamel or stainless steal pan-the darker the color the better).
- 3. Rinse the sides of the jar with the wash bottle to free any organisms that may stick to the side of the jar.
- 4. Rinse out the culture jar with DI water.
- 5. Refill the jar to the mark with DeCl.
- 6. Replace the 2 squares of 1mm mesh Nytex(TM) screen.
- 7. Feed the culture (D. 1).
- 8. Return adults that were collected in 1mm mesh sieve to culture jar using the glass pipette. Discharge the *H. azteca* carefully <u>underwater</u>, to avoid capturing air under the carapace-resulting in floaters.
- 9. Count adult *H. azteca* to keep track of brood stock survival recording the total number alive and the number of mating pairs. Count the neonates to monitor reproduction. As reproduction drops, replace brood stock with new animals. Record all data in appropriate log.
- 10. Neonates will now be left in the counting pan. There are two options at this point.

(1) Use 0-7 day old neonates in testing.

(2) Place collected neonates into culture jar (E. 1-2). Give neonates a brood number and record it in the Log Book. Rear these organisms to the 7-14 day old stage for testing. Feed this jar at the same rate as the culture stock jars.

A good source of new brood stock are animals that have been matured to 7-14 days old but are not used in testing. At 14 days these animals should be thinned to 50 per jar and allowed to mature for breeding purposes at this density. Mating pairs will become evident at about 18-21 days of age.

G. Log Book Maintenance

Each time the culture is handled, the log book must be filled out. The maintenance records help to troubleshoot culture deficiencies. The following are recorded in the H. *azteca* culture log.

- 1. Place the date on the next available line for the stock jar you are renewing (each stock jar has a separate page).
- 2. Record feeding by placing the YCT batch number and your initials under the heading "YCT", and your initials under the heading "Alga" for each time you feed them.
- 3. Record the amount of water renewed under the appropriate heading (ex. 100%).
- 4. Record the number of neonates produced at each renewal. All neonates collected at each renewal are placed into a single jar and given a brood number. This number is recorded in a separated section of the log book titled "Broods".
- 5. Record the number of surviving adults at each renewal.
- 6. Record the number of mating pairs at each renewal.

APPENDIX C: Toxicity Test Protocol

TEST PROTOCOL FOR CONDUCT OF SEDIMENT TOXICITY TESTS WITH HYALELLA AZTECA IN REFERENCE SEDIMENT: ORGANIC CARBON MANIPULATIONS

TEST SUBSTANCE: Branched detergent slurry; alkylbenzene sulfonate (ABS; T-1343).

TRAC ID: TB-422, TB-423, TB-424, TB-425

SPONSOR: Soap and Detergent Association

STUDY DIRECTOR: Patrick Downey

QUALITY ASSURANCE OFFICER: Barney Venables

LABORATORY ASSISTANT: Melody Pride, Nhung Tran

TEST SYSTEM: *Hyallela azteca* in reference sediment + humic acid and dechlorinated tap water.

Written August 2, 1993 Revised August 12, 1993

Reviewed

Approved

Patrick Downey, Study Director

Barney Venables, Quality Assurance Officer

1.0 INTRODUCTION

This protocol is written specifically for the "Sediment/ABS" project Sponsored by the Soap and Detergent Association (475 Park Ave. South, New York, NY 10016). Documentation of test conduct is to be carried out per "Good Laboratory Practices; 40 CFR Part 792, August 1989".

All applicable documentation of activities associated with this test is found in the raw data.

Three series of tests will be conducted. Each series will include four simultaneous toxicity tests. Each toxicity test will consist of five alkylbenzene sulfonate (ABS) concentrations and a control. Each toxicity test will be prepared as follows.

1) Test TB-422: Exposure concentrations will be prepared by mixing ABS with TRAC reference sediment (Lot #1).

2) Test TB-423: Exposure concentrations will be prepared by mixing ABS with TRAC reference sediment (Lot #1) which has been mixed with humic acid (technical sodium salt, Aldrich Catalog No. H1675-2, Lot No. JF 01828JZ) to produce sediment with a target total organic carbon (TOC) content of 0.6%.

3) Test TB-424: Prepared as TB-423 except with a target sediment TOC content of 1.2%.

3) Test TB-425: Prepared as TB-423 except with a target sediment TOC content of 3%.

Three replicates of each exposure will be prepared (See below). One replicate will contain the interstitial water (IW) sampler. The same replicate will be sacrificed at the beginning of the test to provide samples for analytical determination of methylene blue active substance (MBAS) and TOC. The two remaining replicates of each exposure will contain organisms for the toxicity test.

The following analytical determinations will be made:

1) MBAS concentration in IW, overlying water (OW) and sediment of each exposure and control of each test.

2) TOC in sediment of the unspiked control and the highest test exposure.

3) TOC and dissolved organic carbon (DOC) in the IW and OW of each exposure.

4) Particle size distribution (per Gee and Bauder, 1886) and cation exchange capacity (per Plumb, 1981) will be determine on TRAC Reference Sediment, Lot #1.

The toxicity test will begin and IW, OW and sediment samples will be collected after the overlying water and the sediment loaded with ABS have been in contact for 24 h. The toxicity test will last 48 h with no renewal.

2.0 SOURCE OF ORGANISMS

The amphipod Hyalella azteca is cultured in-house according to SOP 105.1.

3.0 PREPARATION OF ORGANISMS

Organisms to be used for this project will be H. azteca neonates 14 - 20 d of age. Neonates are removed from each culture jar 20 d before the beginning of the test. Neonates are again removed from the culture jars twice at three day interval. These neonates are maintained in dechlorinated tap water until used in the tests.

4.0 PREPARATION OF EXPOSURES

4.1 Addition of Humic Acid

Analytical determination of TOC in TRAC reference sediment (Lot #1) will be made. According to the manufacturer, assays of the technical grade humic acid indicate that it contains $38\% \pm 4\%$ organic carbon. An amount of humic acid will be added to 7 Kg (dry wt.) portions of the reference sediment to produce three sediment matrices with TOC content of 0.6, 1.2 and 3%, including the organic carbon already present.

4.2 Stock ABS solution

ABS slurry (TRAC ID T-1343) was delivered to TRAC on 09/13/89. This slurry was prepared by Monsanto and reported to have an MBAS content of 20.2%. A stock ABS solution containing 100 g/L ABS slurry will be prepared by dissolving 25 g ABS slurry into 250 mL dechlorinated tap water. Errors in preparation may result from foaming of the solution during preparation. These errors are minimized by allowing the foam to dissipate before bringing the solution to final volume. This solution is stored at 4° C before it is used.

4.3 Loading Sediment With ABS

Previous testing using ABS indicates that the appropriate ABS slurry concentrations in the sediment are 250, 500, 1000, 2000, and 4000 mg slurry/Kg sediment. The ABS is to be loaded on the sediment as follows. For each exposure the appropriate amount of

ABS stock (Table 4.1) is combined with dechlorinated tap water to produce 50 mL total volume. One Kg of reference sediment is placed in a glass bowl. The 50 mL sample is then added to the sediment and thoroughly mixed by hand with a TeflonTM spoon. The sediment is then ready to place in the test vessels.

ABS Slurry Sediment Concentration (mg/Kg)	mL ABS Stock Added to 1 kg Sediment
250	2.5
500	5.0
1000	10.0
2000	20.0
4000	40.0

Table 4.1 Volumes of ABS stock (25 g/L) to be added to 1 Kg sediment to achieve the indicated exposures.

4.4 Preparation of IW Samplers

One 47 mm glass fiber filter (Gelman A/E) is placed over the fritted end of each sampler (Pittinger, et al; 1988) and secured with a rubber band. A small mark is made on the sampler 1.5 cm above the fritted glass bottom using a permanent marker. The open end of each sampler is then plugged with a rubber stopper.

4.5 Preparation of Test Vessels (Day 1)

Test vessels are 1 L glass beakers. The test vessels which are to contain the IW samplers are prepared before the addition of sediment. Three hundred and fifty g of the appropriate loaded sediment are placed in the beaker and spread evenly on the bottom. Using a pipet, 50 mL dechlorinated tap water are then poured evenly over the sediment. The sides of the beaker are tapped gently with a finger to settle the sediment. 'Using rubber bands, the samplers are affixed to a horizontal rod which places the samples in the middle of the beakers. Each IW sampler is then slowly lowered into the sediment until the mark on the sampler is even with the surface of the sediment. After the samplers are in place, sediment is then introduced into the test vessels without IW samplers exactly as above.

After sediment has been introduced into all test vessels, 800 mL dechlorinated tap water

are gently siphoned into each vessel using a glass pipet and TygonTM tubing. The test vessels are allowed to stand for 24 h before organisms are introduced.

5.0 BEGINNING THE TEST (Day 2)

5.1 Initial In Situ Measurements

On the day the test is to begin (Day 2), initial measurements of temperature (SOP 403.1), dissolved oxygen (SOP 400.1), pH (SOP 401.1), and conductivity (SOP 402.1) are taken from the replicate of each exposure containing the sediment samplers. In addition, these measurements are taken from one replicate of each exposure in which organisms are to be placed and in both replicates of the 4000 mg/Kg exposure. If all *in situ* measurements are within prescribed limits (Table 5.1), as verified by the QA officer, the organisms may be added to the test vessels.

5.2 Adding Organisms to Test Vessels

H. azteca neonates 14 - 21 d old are removed from the holding vessel using a glass pipet. Five neonates are placed in each of 14 30-mL beakers containing 10 mL dechlorinated tap water. The number of organisms in each beaker is verified by the QA officer. The organisms are then transferred by pipet to the appropriate test vessel and the time of day is recorded. This procedure is repeated twice until 15 organisms have been placed in each test vessel.

Temperatura	$25 \pm 1^{\circ}C$
	25 1 1 0
Minimum Dissolved Oxygen	4.0 mg/L
pH Range	6.5 - 8.5
Light Quality	Ambient laboratory illumination
Photoperiod	16 h light, 8 h dark
Test Vessel	1000 mL glass beaker
Replicates per Concentration	2
Organisms per Replicate	15
Duration of Test	48 h
Endpoint	Death; no movement when gently disturbed

Table 5.1. Experimental conditions of test.

5.3 Collection and Handling of IW, OW, and Sediment Samples.

Collection of aqueous samples will follow procedures recommended in EPA Method 425.1 for MBAS analysis and APHA 5310C for TOC and DOC. Treatment of glassware for collection of MBAS samples will be per routine cleaning procedures (SOP 800.1). Cleaning of glassware for storage of both aqueous and sediment samples for TOC and/or DOC analysis involves submerging an amber glass bottle overnight in 1:1 nitric acid. The bottles are then sealed with aluminum foil and placed in an oven at 400°C for at least one h. Flasks to be used in the collection of organic carbon samples are to be similarly prepared.

5.3.1. Collection and Handling of IW Samples

At the time the last organisms are added to the vessels, the stoppers are removed from the IW samplers. After the samplers have filled completely, the IW sample is removed using a pipet and bulb and placed in an appropriately cleaned (see above) 250 mL Erlenmeyer flask. After 145 mL of IW is collected from each exposure, the flasks are swirled to thoroughly mix the contents. One 20 mL aliquot of IW sample is placed in a 25 mL test tube for MBAS analysis. The remaining IW sample is placed in an appropriately cleaned (See APHA 5310C) 125 mL amber glass bottle with a TeflonTM cap. One half of the 125 mL sample is filtered through an appropriately washed 0.45 μ filter (APHA 5310C). The filtered and unfiltered IW samples in the amber bottles are then preserved with sulfuric acid for organic carbon analysis.

5.3.2. Collection and Handling of OW Samples

After the IW samples are collected, the OW is removed by siphon into a beaker. The OW is then swirled gently to thoroughly mix the contents. A 250 mL aliquot is then transferred to a clean (APHA 5310C) amber glass bottle. One half of the OW sample is then filtered (APHA 5310C) and both the filtered and unfiltered OW samples are preserved with sulfuric acid.

5.3.3 Collection and Handling of Sediment Samples

The test vessels containing sediment are covered with aluminum foil. The IW, OW, and sediment samples are then submitted to the analytical section for analysis. Approximately 25 g of sediment plus associated IW are placed in a polyethylene centrifuge tube and centrifuged at 3000 rpm for 1 h. The supernatant water is then removed with suction. The sediment samples are then submitted to the analytical section for analysis. An additional sample of sediment from the highest exposure of each test is in a clean amber glass jar for analysis of sediment TOC. This analysis will be performed by an outside laboratory.

Three 1 Kg samples for analysis of particle size distribution and cation exchange capacity

will be collected in a polyethylene bag.

6.0 TEST MAINTENANCE

Measurements of temperature, dissolved oxygen, pH, and conductivity are taken in one replicate of each exposure and in both replicates of the 4000 mg/Kg exposure at 24 h. Measurements which are outside specified limits are reported to the QA officer. In addition, the following additional observations are made: OW appearance (clear, turbid) and level of activity shown by organisms observed in the test vessels (swimming in OW, moving about sediment surface, not moving).

7.0 ENDING THE TEST

The test is ended 48 ± 2 h after the first organism was introduced. Final *in situ* measurements are taken. Organisms and OW are removed from the test vessels by siphon. All OW and the top 1 cm of sediment are removed from the test vessel and filtered through 0.25 mm mesh screen. All living and dead organisms are counted. An attempt is made to account for all organisms which were placed in the test vessel.

8.0 REFERENCES

Gee, G.W. and J. W. Bauder. 1986. Particle-size analysis. In: Methods of Soil Analysis, Part 1, W.C. Black, Ed., american Society of Agronomy, Madison, WI pp. 398-406.

Plumb, R.H.Jr. 1981. Procedure for handling and chemical analysis of sediment and water samples, Technical report EPA/CE-81-1, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS. 403 pp.

Pittinger, C.A., V.C. Hand, J.A. Masters and L.F. Davidson. 1988. Interstitial water sampling in ecotoxicological testing: Partitioning of a cationic surfactant. In: W.J. Adams, G.A. Chapman and W.G. Landis, Eds, Aquatic Toxicology and Hazard Assessment: 10th Volume, ASTM STP 971, pp. 138-148.