EUTROPHICATION IN CHESAPEAKE BAY BEFORE AND AFTER IMPLEMENTATION OF MARYLAND'S PHOSPHATE DETERGENT BAN

prepared for

THE SOAP AND DETERGENT ASSOCIATION 475 Park Avenue South New York, New York 10016

by

WILLIAM W. WALKER, JR., PH.D. Environmental Engineer 1127 Lowell Road Concord, Massachusetts 01742

May 1988

٥ • -

A B S T R A C T EUTROPHICATION IN CHESAPEAKE BAY BEFORE AND AFTER IMPLEMENTATION OF MARYLAND'S PHOSPHATE DETERGENT BAN

prepared for The Soap and Detergent Association 475 Park Avenue South New York, New York 10016 by William W. Walker, Jr., Ph.D. Environmental Engineer 1127 Lowell Road Concord, Massachusetts 01742

May 1988

A statewide phosphate detergent ban went into effect in Maryland on December 1, 1985. Similar legislation became effective in the District of Columbia in September of 1986. Projected benefits included improvements in the quality of Chesapeake Bay waters due to reductions in phosphorus loadings from municipal discharges without phosphorus facilities. Limited data indicate that phosphorus removal concentrations in sewage discharged from the Maryland treatment plants without phosphorus removal facilities decreased an average of 33% (Walker, 1987b). However, direct relationships between phosphorus loading and biological responses in the Bay, as measured by peak algal densities or by the depletion of dissolved oxygen from bottom waters, cannot be presumed because these responses are controlled by many factors including phosphorus, nitrogen, light temperature, and hydrodynamic features (MDOEP, 1987, USEPA, 1987). This report describes eutrophication-related water quality conditions in the Bay, its estuaries, and its tributaries before and after implementation of the phosphate detergent bans, based upon analysis of monitoring data collected between mid 1984 and mid 1987.

Analyses of river monitoring data indicate that reductions in phosphorus loadings to the Bay resulting from the phosphate detergent ban are similar to projections made prior to the ban's implementation. Other factors, including municipal phosphorus removal, reduced phosphorus loads further during the study period. However, corresponding decreases in algal productivity were not detected at Bay or estuary stations. While this result could reflect algal changes that were too small to detect, the lack of algal response is clearly consistent with observations made in this report and by others that factors other than phosphorus, particularly nitrogen, regulate algal growth and related water-quality conditions.

The full range of costs and benefits must be considered in evaluating the phosphate detergent ban and in comparing it with alternative strategies for achieving the same management objectives. Considering the small changes in phosphorus loading resulting from the ban and the importance of limiting nutrients other than phosphorus, it is clear that the ban in itself contributes little to the cause of restoring the Bay.

TABLE OF CONTENTS

LIST OF TABLES ii
LIST OF FIGURES iii
EXECUTIVE SUMMARY v
INTRODUCTION 1
DATA SOURCES 4
HYDROLOGIC CONDITIONS 5
RIVER STATIONS - LOW-FLOW ANALYSIS 6
LOADINGS AT FALL-LINE STATIONS
BAY AND ESTUARY STATIONS
STATISTICAL CONTRASTS
NUTRIENT AND ALGAE TIME SERIES
PRODUCTIVITY CALCULATIONS
DISSOLVED OXYGEN DEPLETION
CONSEQUENCES OF SHIFTS IN LIMITING NUTRIENT74
CONCLUSIONS
REFERENCES

APPENDICES

A Monthly Runoff at Fall-Line Gauging Stations
B Diagnostic Plots of River Phosphorus Concentrations
C Bay and Estuary Stations - Means by Station and Season
D Mean Concentrations by Segment and Month - Bay Stations
E Mean Concentrations by Segment and Season - Bay Stations
F Time Series Plots - Monthly Means by Segment
G Productivity Factors - Means by Segment and Month
H Productivity Factors - Means by Segment and Season

LIST OF TABLES

1	Seasonal and Annual Runoff at Four Gauging Stations
2	River Sampling Stations and Flow Gauges13
3	Municipal Discharges Above River Monitoring Stations14
4	Pre-Ban and Post-Ban Nutrient Export under Low Flows - July 1984 through March 198719
5	Pre-Ban and Post-Ban Nutrient Export under Low Flows - December 1984 through November 198629
6	Quarterly Phosphorus Budget for Maryland Portion of Chesapeake Bay36
7	Nutrient Budgets for Maryland Portion of Chesapeake Bay
8	Bay and Estuary Station Codes and Coordinates
9	Statistical Contrast of 1985 and 1986 Means by Season and Station Linear Scales
10	Statistical Contrast of 1985 and 1986 Means by Season and Station Log10 Scales
11	Relative Productivity Model
12	Spring Oxygen Depletion Rates at Bay Mainstem Stations

-iii-

LIST OF FIGURES

÷

1	Annual Runoff for Water Years 1971-1987 8
2	Monthly Runoff for Water Years 1983-1987 9
3	River Sampling Stations11
4	Confidence Ranges for Load Reductions Under Low-Flows
5	Post-Ban vs. Pre-Ban Loads Under Low Flows July 1984 through March 198721
6	Load Reduction vs. Upstream Effluent Density July 1984 through March 198723
7	Runoff and Concentration Time Series for Potomac River Station POT1184
8	Runoff and Concentration Time Series for Patuxent River Station PXT0603
9	Post-Ban vs. Pre-Ban Loads Under Low Flows December 1984 through November 1986
10	Load Reduction vs. Upstream Effluent Density December 1984 through November 198631
11	Monthly Phosphorus Loads and Flows at Fall Line Stations
12	Cumulative Phosphorus Loads and Unit Runoff at Fall Line Stations34
13	Bay Station Map
14	Estuary Station Map41
15	Phosphorus, Chlorophyll-a, and Flow and Chlorophyll-a Time Series Choptank River Station MET5.1
16	Total Phosphorus Means - Bay Stations - 1984-1987
17	Chlorophyll-a Means - Bay Stations - 1984-198751
18	Chlorophyll-a and Soluble Nutrients at Three Bay Stations
19	Inorganic N/P Ratios - Bay Stations - 1984-198755
20	Chlorophyll-a Nuisance Frequencies - Bay Stations - 1984-198756
21	Relative Productivity by Month and Segment

LIST OF FIGURES (ct.)

22	Growth Limitation Factors by Month and Segment
23	Limiting Nutrient Frequencies by Month and Segment64
24	Productivity Sensitivity to Available Nutrient Levels
25	Dissolved Oxygen Depletion at 20 Meters - Bay Stations
26	Chlorophyll-a and Oxygen Depletion at Bay Station CB5.271
27	Salinity, Temperature, Oxygen Differences, and Surface Chlorophyll-a Station CB5.272
28	Salinity Contours at Bay Station CB5.273
29	Limiting Nutrient Frequencies by Segment and Season
30	A Conceptual Model of Coupled Phosphorus-Limited and and Nitrogen-Limited Systems77
31	Historical Phosphorus and Nitrate Levels - Bay Segment 1

EXECUTIVE SUMMARY

A statewide phosphate detergent ban went into effect in Introduction. Maryland on December 1, 1985. Similar legislation became effective in the District of Columbia in September of 1986. Projected benefits included improvements in the quality of Chesapeake Bay waters due to reductions in phosphorus loadings from municipal discharges without phosphorus removal facilities. Limited data indicate that phosphorus concentrations in sewage discharged from the Maryland treatment plants without phosphorus removal facilities decreased an average of 33% However, direct relationships between phosphorus (Walker, 1987b). loading and biological responses in the Bay, as measured by peak algal densities or by the depletion of dissolved oxygen from bottom waters, cannot be presumed because these responses are controlled by many factors including phosphorus, nitrogen, light, temperature, and hydrodynamic features (MDOEP, 1987; USEPA, 1987).

-v-

This report describes eutrophication-related water-quality conditions in the Bay and its estuaries before and after implementation of the phosphate detergent bans. Because of the accuracy and intensity of Bay monitoring efforts, it is possible to compare pre-ban and postban water quality in a statistical sense. Although differences between these two time periods may be detectable, it is very difficult to attribute observed differences to specific causes because of the complexity of the Bay and its watershed and the numerous sources of variability. Four factors that have the potential for producing or contributing to observed changes in water quality are:

- (1) natural changes (associated with hydrology, weather, etc.);
- (2) changes caused by the phosphate detergent ban;
- (3) other changes induced by man (watershed development, watershed management, wastewater treatment, flow regulation, etc.); and
- (4) sampling and analytical variations, which impose limitations on the ability to detect changes due to the above factors.

On a Bay-wide scale, estimation of water quality changes brought about by the phosphorus detergent ban through analysis of monitoring data is infeasible, given the other sources of variation, relatively short period of record, and the relatively small change in phosphorus loading resulting from the ban. In this report, potential impacts of the ban are considered in relation to the overall phosphorus balance of Maryland's portion of the Bay, as calculated from point source inventories and river monitoring data collected over the study period. Factors controlling algal productivity in the Bay as a function of season and location are assessed as a means of evaluating the sensitivity of algal productivity in the Bay to detergent phosphate and other nutrient sources.

Data Sources. Water quality and flow data for analysis are derived from monitoring programs conducted by the Maryland Department of the Environment and the U.S. Geological Survey. Most of the information was collected with the support and guidance of the EPA Chesapeake Bay Program. Three types of monitoring stations are considered: river (above the Fall Line), estuary, and Chesapeake Bay mainstem stations. River station data cover the period from July 1984 to March 1987 (in some cases, to September 1987). Estuarine data cover the period from October 1984 through January 1987, and Bay data, from July 1984 through July 1987.

Impacts of Ban at River Stations. At river monitoring stations with relatively high upstream sewage flows, mass-balance calculations show that observed reductions in stream phosphorus loadings under low-flow conditions following the phosphate detergent ban were consistent with the average observed reduction in effluent phosphorus concentrations at the Maryland treatment plants without phosphorus removal facilities. The data base does not permit detailed evaluation of biological responses at river stations. Such responses are likely to be small because soluble reactive phosphorus concentrations generally exceed growth-limiting levels at river stations, where physical factors (velocity, residence time, temperature) usually limit peak algal densities. At the river station with the highest monitoring intensity

-vi-

and most pronounced reduction in phosphorus concentration following the ban (Patuxent River), summer mean chlorophyll-a concentrations remained at very low levels in 1985 (3.3 ppb) and 1986 (3.6 ppb).

Impacts of Ban on Phosphorus Loads Entering the Maryland Portion of Chesapeake Bay. Elimination of detergent phosphorus from the 112 million gallons of sewage discharged daily without phosphorus removal could account for 2.4 to 11.1% reductions in the amount of phosphate entering the Maryland portion of the Bay between January 1986 to September 1987, based upon quarterly mass balances. Percentage reductions corresponding to the 71 mgd without phosphorus removal after 1987 are lower, ranging from 1.8 to 7.1%.

Other factors caused the overall phosphorus load reductions to exceed those associated with the ban. The other factors include natural variations, attributed to changes in hydrology and weather, and reductions induced by man, such as watershed management and improved municipal wastewater treatment. For example, phosphorus loads entering the Maryland portion of the Bay were 11% lower in the Spring of 1986 than in the Spring of 1985; the ban could account for a load reduction of 7%. Summer loadings from all sources were 25% lower in 1986 than in 1985; the ban could account for an 11% reduction during this period.

These changes in loading were detected over a period of relatively low runoff for all major tributaries of the Bay, a condition which would tend to increase the relative importance of point sources (including detergent phosphates) vs. nonpoint sources as factors contributing to the total nutrient loading. Percentage reductions in phosphorus loading attributed to the ban would be lower during periods of average or aboveaverage runoff and/or if atmospheric and bottom sediment sources of phosphorus were also considered.

Changes in phosphorus loading are neither equivalent nor directly related to changes in Bay water quality, as measured by algal density or dissolved oxygen. The evaluation of water quality impacts of the ban must consider both the observed changes in overall phosphorus loading and the potential sensitivity of algal growth to changes in phosphorus concentration as a function of season and location in the Bay.

Impacts of Ban on Water Quality in the Maryland Portion of Chesapeake

Consistent with decreases in phosphorus loading, statistically Bay. significant decreases in seasonal mean phosphorus concentrations were measured at several Bay and estuary stations between 1985 (pre-ban) and 1986 (post-ban). Spring total phosphorus concentrations were significantly lower at 10 stations out of 37 with sufficient data; Summer concentrations were lower at 7 stations out of 40. Only one sampling station out of a total of 77 Bay and estuary stations had a statistically significant reduction in algal density, as measured by chlorophyll-a concentration, coincident with a statistically significant reduction in phosphorus concentration. Both Spring and Summer conditions in 1985 were compared to 1986. The apparent reductions in phosphorus and chlorophyll-a at this one station (Choptank River) could be attributed to variations in streamflow. The lack of detectable biological responses at other locations with detectable reductions in phosphorus is consistent with the spatial and seasonal distributions of limiting nutrients, with statistical difficulties associated with detecting small changes in algal densities, and with results of model simulations designed to evaluate the sensitivity of algal primary production to changes in soluble nutrient concentrations as a function of time and location in the Bay.

The data analyzed in this study suggest that no improvement in Bay conditions occurred over the time period studied with respect to algal production or compliance with management goals, despite reductions in phosphorus loadings attributed to the detergent phosphate ban, improved wastewater treatment, and other factors. The frequencies of observed chlorophyll-a values exceeding the 15 ppb management goal were 19.8% in 1984-1985 and 21.6% in 1986-1987. The timing, rate, and maximum vertical extent of oxygen depletion in 1986 and 1987 were at least as severe as those measured in previous years, if not more so, particularly in the southern portions of the Bay in Maryland (e.g., mouth of Potomac River). Roles of Nitrogen, Phosphorus, and Silica in Bay Algal Blooms. A major, sustained algal bloom (chlorophyll-a > 30 ppb) occurred in the Bay between the mouth of Patuxent and the Virginia state line over a two month period in the Spring of 1987. Peak algal biomass was limited by silica in the Spring and by nitrogen in the Summer. Blooms also occurred in the Bay between Annapolis and the Patuxent River during the Summers of 1984, 1985, 1986 and 1987. These summer blooms were generally accompanied by rapid increases in ortho-phosphorus and ammonia concentrations, apparently caused by upwelling of nutrient-rich bottom waters. Peak biomass levels were controlled by nitrogen.

Despite significant reductions in phosphorus loadings to the Upper Bay achieved since the 1970's, nitrogen remains the primary limiting nutrient during the Summer south of Annapolis. Silica limits peak diatom populations during the Spring south of Patuxent River. Under these conditions, the productivity of the Bay and resulting depletion of dissolved oxygen from bottom waters are very insensitive to small changes in phosphorus loadings attributed to the detergent ban. Further, potential benefits of phosphorus controls that might occur in freshwater regions are partially offset by displacement of nitrogen, silica, and productivity to lower regions of the Bay, where most of the remaining viable shellfish beds are located.

Importance of Nitrogen Controls. A focus on nitrogen loadings is required if significant reductions in productivity and oxygen depletion are to be realized. Nutrient balance computations indicate that Maryland point sources account for only 14% of the total nitrogen loading to the Maryland portion of the Bay. This suggests the relative importance of addressing nonpoint nitrogen loadings. Such loadings may have been significantly underestimated in previous modeling studies (USEPA,1983; Fisher et al.,1988), based upon comparisons with nitrogen loadings calculated in this report using recent river monitoring data. The importance of controlling nitrogen, as well as phosphorus, in order to control Bay productivity is reflected in the Draft Bay Agreement,

-ix-

which calls for a 40% reduction in both N and P loadings below 1985 levels (USEPA, 1987).

Potential Future Detergent Phosphate Impacts. For a 25-71 mgd range of effluent volumes that may not be subject to phosphorus effluent limits in the future, reductions in phosphorus loading to the Maryland portion of the Bay attributed to the ban would amount to 1-3% of the 1985 loading. Corresponding percentage reductions in algal productivity would be lower because of the importance of growth-limiting factors other than phosphorus, perhaps in the range of 0.3 to 0.8%, based upon interpolation of USEPA(1987) model results.

<u>Conclusion</u>. Reductions in phosphorus loadings to the Bay resulting from the phosphate detergent ban are similar to projections made prior to the ban's implementation. Other factors, including municipal phosphorus removal, reduced phosphorus loads further during the 1984-1987 study period. However, there was no detectable decrease in algal productivity in response to the phosphorus reductions. While this result could reflect algal changes that were too small to detect, the lack of algal response is clearly consistent with observations made in this report and by others that factors other than phosphorus, particularly nitrogen, regulate algal growth and related water quality.

The full range of costs and benefits must be considered in evaluating the phosphate detergent ban and in comparing it with alternative strategies for achieving the same management objectives. Considering the small changes in phosphorus loading resulting from the ban and the importance of limiting nutrients other than phosphorus, it is clear that the ban in itself contributes little to the cause of restoring the Bay.

INTRODUCTION

A statewide phosphate detergent ban went into effect in Maryland on December 1, 1985. Similar legislation was enacted in the District of Columbia and became effective in September 1986. Projected benefits included reductions in phosphorus loadings to Chesapeake Bay from municipal discharges without tertiary phosphorus removal facilities (Jones and Hubbard, 1986). Basinwide efforts at reducing point and have been undertaken nonpoint nutrient loadings to curtail eutrophication and related water quality problems in the Bay and its tributaries. Direct relationships between phosphorus loading and biological responses in the Bay, as measured by peak algal densities or by depletion of dissolved oxygen from bottom waters, cannot be presumed, however, because these responses are controlled by several factors, including phosphorus, nitrogen, light, temperature, and hydrodynamic features (MDOEP, 1987; USEPA, 1987).

Monitoring data indicate 27-35% reductions in influent phosphorus concentrations at major treatment plants following the Maryland and DC bans (Jones and Hubbard, 1986; Booman and Sedlak, 1986). Limited data indicate an average 33% reduction in effluent concentrations from Maryland treatment plants without phosphorus effluent limitations Harris and Walker (1985) projected that a phosphate (Walker, 1987b). detergent ban would result in 2.7 to 7.2% reduction in phosphorus loadings to the Maryland portion of Chesapeake Bay under 1985 effluent limitations. With full implementation of planned phosphorus removal facilities at municipal treatment plants, the projected load reduction ranged from 1.6 to 5% for an average hydrologic year and from 2 to 6% The projected changes are small because phosphorus for a dry year. loadings from nonpoint sources are important and more than 80% of the total effluent volume from major point sources has phosphorus effluent limits. The estimate ranges reflect various assumptions regarding changes in influent and effluent concentrations and sewage phosphorus loss in transport (Harris and Walker, 1985).

The following report describes eutrophication-related water quality its tributaries before conditions in the Bay and and after implementation of the phosphate detergent bans. One task is to evaluate "changes" in water quality following the ban. Given monitoring programs with sufficient intensity, consistency, and quality control (as emphasized in current Bay monitoring efforts), it is possible to characterize water quality conditions during a given time period and to compare them with conditions measured during other time periods. It is also possible, though with some difficulty, to test whether observed changes are statistically significant (e.g., whether the means are are essentially statistical different). These exercises and descriptive.

Causal inferences are much more difficult because of the complexity of the Bay and its watershed and numerous sources of variability. In interpreting observed changes in water quality, it is useful to consider four types of variations:

- natural variations (associated with hydrology, climate, etc.);
- (2) variations caused by the phosphate detergent ban;
- (3) other variations induced by man (watershed development, wastewater management, flow regulation, etc.); and
- (4) sampling and analytical variations.

Types 1, 2, and 3 are "real" (actually occurred in the system being monitored). Type 4 variations are "unreal" (occurred in the data but not in the system), but impose limitations on the ability to detect real changes. On a Bay-wide scale, identification of Type 2 variations through data analysis is infeasible, given the other sources of variation, relatively short period of record, and the relatively small change in phosphorus loading expected to result from the ban. Given the above considerations, the primary objectives of the analysis are:

- (1) to quantify changes in phosphorus concentration and loading at stream monitoring stations following the phosphate detergent ban and relationships with upstream municipal discharges;
- (2) to quantify nutrient loadings to the Maryland portion of Chesapeake Bay during years immediately preceding and following the ban, based upon municipal effluent data and monitoring data from river stations at the Fall Line;
- (4) to estimate impacts of the ban on the Bay phosphorus budget under existing and future phosphorus effluent limits;
- (5) to test for statistically significant changes in phosphorus, chlorophyll-a, and other water quality variables following the ban at monitoring stations in the Bay and its tributaries;
- (6) to evaluate factors controlling algal productivity as a function of season and location based upon measurements of soluble nutrients and other water quality components;
- (7) to assess the sensitivity of algal productivity in the Bay to the detergent ban, based upon the projected changes in phosphorus loading and spatial/seasonal distributions in growth-limiting nutrient.

Results are described below, following discussion of data sources and hydrologic conditions present during the study period.

-3-

DATA SOURCES

The water quality data analyzed below are derived from monitoring programs conducted by the State of Maryland and the U.S. Geological Survey between July 1984 and September 1987. This period includes 17 months before and 22 months after enforcement of the Maryland ban on December 1, 1985. Although the DC ban was officially implemented in September of 1986, its effects would be felt more or less simultaneously with those of the Maryland ban because of distribution patterns by regional supermarket chains (Jones and Hubbard,1986). In July 1984, ambient monitoring activities of the Maryland Department of the Environment (then the Maryland Office of Environmental Programs) and the U.S. Geological Survey were intensified, as part of Baywide monitoring efforts coordinated and supported by the U.S. Environmental Protection Longer periods of record have also been analyzed for a few Agency. stations with adequate data.

Water quality data have been compiled for three types of monitoring stations:

- (1) **River Stations**: in freshwater segments of rivers, streams, creeks (above the Fall Line).
- (2) Estuary Stations: in tidal segments or at mouths of rivers discharging into the Bay;
- (3) Bay Stations: Chesapeake Bay from the mouth of the Susquehanna River to the Virginia state line.

Under terminology adopted by the EPA Chesapeake Bay Program, these station groups are referenced as "Fall-Line"/"Core", "Tributary", and "Mainstem", respectively.

River stations were identified through a search of STORET, EPA's nationwide water quality data base, for ambient monitoring stations in Maryland with total phosphorus data for 1985 and 1986. Data were subsequently retrieved and screened based upon sampling frequency (minimum 8 samples/year in 1985 and 1986) and upon the availability of streamflow data for pairing with water quality measurements. Data from 4 USGS river stations for water year 1987 (not yet posted on STORET) have been obtained from the USGS through the Maryland Department of the Environment. River stations with drainage basins primarily outside of Maryland and/or without municipal discharges (e.g., Susquehanna, Upper Monocacy, Upper Potomac, Upper Choptank) provide approximate controls for distinguishing random year-to-year variations (associated with hydrologic variations, for example) from those associated with the detergent bans.

Streamflows required for analysis of river monitoring data have been obtained from STORET. Recent provisional data (water year 1987) have been obtained directly from the Maryland office of the U.S. Geological Survey.

Estuary and Bay data have been obtained from computer files maintained by the EPA's Chesapeake Bay Program in Annapolis. The data have been transferred on tape to the USEPA's National Computer Center and subsequently downloaded to a microcomputer for analysis. The Estuary data set spans from October 1984 through January 1987. The Bay data set spans from July 1984 through July 1987.

The cooperation of the EPA Chesapeake Bay Program, Maryland Department of the Environment, and the U.S. Geological Survey in providing this information is gratefully acknowledged.

HYDROLOGIC CONDITIONS

Streamflows impact river water quality through such mechanisms as dilution, runoff, and scouring. Flows also influence Bay responses to nutrient loading because of the impacts of turbidity, residence time, and hydrodynamic factors (MDOEP,1987). For these reasons, flow variations must be considered in interpreting water quality data from the Bay and its tributaries.

-5-

Runoff averages 16 inches/year throughout most of Maryland (USGS,1976). Fall Line gauging stations on the Susquehanna, Choptank, Potomac, and Patuxent Rivers account for approximately 82% of the total watershed area of the Maryland portion of the Bay. Intensive water quality monitoring is also conducted at these locations by the Maryland Department of the Environment and U.S. Geological Survey Station to quantify dry-weather and wet-weather loadings of nutrients and other water quality components. Flow data are summarized in Appendix A (monthly) and Table 1 (seasonal and annual). Figure 1 displays annual runoff for water years 1971 through 1987. Figure 2 displays monthly runoff for water years 1984 through 1987.

Runoff volumes were generally above normal in 1984 and below normal in 1985, 1986, and 1987 (Figure 1). Annual runoff from the Susquehanna in 1984 and 1985 ranked 14 and 2, respectively, out of 17 years between 1971 and 1987. Monthly hydrographs (Figure 2) reveal high spring and summer flows in 1984 and low flows in 1985. Floods during November 1985 and April 1987 are notable in the Potomac River monthly hydrograph.

Lower spring inflows during Spring 1985 resulted in less vertical density stratification in the Bay during Spring and Summer of that year (MDOEP,1987). Longitudinal salinity gradients (north to south at the surface) were similar during summers of 1985, 1986, and 1987, however, but were distinctly different from 1984, when high freshwater inflows resulted in less salinity intrusion and stronger vertical stratification.

RIVER STATIONS - LOW FLOW ANALYSIS

Changes in phosphorus loading following the detergent ban have been estimated using monitoring data from 26 river stations (22 different locations) above the Fall Line (Figure 3). These stations consist of the following:

-6-

				-7.	-		
_			Table	e 1			
Seasonal	and	Annual	Runoff	at	Four	Gauging	Stations

STATION:	STATION: MEAN FLOWS (CFS) RUNOFF (INCHES)												
AREA (MI2) SUSQUE.	CHOPTANK	PATUXENT	POTOMAC	TOTAL	SUSQUE.	CHOPTANK	PATUXENT	POTOMAC	TOTAL			
SEASON	SEASON												
97 EN	(057/	197.0	501 /	470/0									
OJ FAL	40554	187.9	581.6	13868	55171	5.12	5.69	5.72	4.10	4.83			
04 WIN	65068	328.4	635.7	27866	91899	7.88	9.84	6.18	8.16	7.95			
84 SPR	84504	256.3	588.4	24357	109706	10.55	7.68	5.72	7 . 13	9.49			
84 SUM	25888	37.0	300.5	7123	33348	3.27	1.12	2.95	2.11	2.92			
84 FAL	26177	29.0	229.1	6711	33146	3.30	0.88	2.25	1.99	2.90			
85 WIN	41012	91.4	296.9	13466	54866	5.07	2.71	2.86	3.90	4.69			
85 SPR	31098	50.4	200.2	9581	40929	3.88	1.51	1.95	2.80	3.54			
85 SUM	9640	44.4	149.5	2777	12612	1.22	1.34	1.47	0.82	1.10			
85 FAL	40361	92.3	217.4	20465	61135	5.10	2.80	2.14	6.06	5.35			
86 WIN	66560	212.3	294.6	18519	85585	8.22	6.29	2.83	5.36	7.32			
86 SPR	39722	55.9	199.2	7189	47166	4.96	1.68	1.94	2.10	4.08			
86 SUM	15049	12.7	96.7	1438	16596	1.90	0.38	0.95	0.43	1.45			
86 FAL	44173	89.7	220.8	5600	50083	5.58	2.72	2.17	1.66	4.38			
87 WIN	37071	283.6	359.7	13362	51076	4.58	8.40	3.46	3.87	4.37			
87 SPR	44878	95.5	335.4	22014	67323	5.60	2.86	3.26	6.44	5.82			
87 SUM	18544	10.9	133.1	4255	22943	2.34	0.33	1.31	1.26	2.01			
WATER YEA	R												
84	53388	201.9	526.1	18261	- 72377	26.82	24.32	20.58	21.50	25.18			
85	26894	53.6	218.5	8100	35266	13.47	6.44	8.52	9.51	12.24			
86	40281	92.8	201.5	11879	52455	20.18	11.14	7.86	13.95	18.20			
87	36138	119.1	261.5	11267	47786	18.10	14.31	10.20	13.23	16.58			
CALENDAR	YEAR												
84	49779	162.0	437.5	16462	66840	25.00	19.51	17.11	19.38	23.26			
85	30469	69.6	215.6	11567	42321	15.26	8.36	8.41	13.58	14.68			
86	41242	92.1	202.4	8133	49669	20.66	11.06	7.89	9.55	17.23			
WIN=MONTH	S 1-3, SPR=	MONTHS 4-6	, SUM=MONTH	is 7-9, F	AL=MONTHS	10-12		· • • • • • • • • • • • •					
ID	LOCATION				STATION	DR. AREA	(MI2)						
SUSQUE.	SUSQUEHANN	A RIVER AT	CONOWINGO	DAM	01578310	27100	-						
CHOPTANK	CHOPTANK R	IVER NEAR	GREENSBORO		01491000	113							
PATUXENT	PATUXENT R	IVER NEAR	BOWIE		01594440	348							
POTOMAC	POTOMAC RI	VER ABOVE	LITTLE FALL	.S DAM	01646500	11560							
TOTAL						39121							
TOTAL WATERSHED OF CHESAPEAKE BAY ABOVE VIRGINIA STATE LINE 47997													

AREA-WEIGHTED RUNOFF (INCHES) BY SEASON AND YEAR:

	WINTER	SPRING	SUMMER	FALL
1983				4.83
1984	7.95	9.49	2.92	2.90
1985	4.69	3.54	1.10	5.35
1986	7.32	4.08	1.45	4.38
1987	4.37	5.82	2.01	

.

SUSQUEHANNA mean MEAN 71 CHOPTANK MEAN 71 7'9 PATUXENT 72 73 74 75 76 77 78 79 MEAN 71 POTOMAC 82 83 84 7 9 MEAN 71 75 76 WATER YEAR

ANNUAL RUNOFF (INCHES)

Figure 1 Annual Runoff for Water Years 1971-1987

MONTHLY RUNOFF (INCHES)

Figure 2 Monthly Runoff for Water Years 1983-1987

-9-

- 21 MDOEP Stations Monthly Frequency
- 1 MDOEP Station Biweekly Frequency (Patuxent River)
- 4 USGS Stations High-flow Sampling

Four locations on the Patuxent, Potomac, Susquehanna, and Choptank Rivers were sampled by both agencies. Stations codes and descriptions are listed in Table 2.

Maryland municipal discharges upstream of these stations are listed This inventory has been developed from Sellars et al, in Table 3. (1987), Harris and Walker (1985), and a data base maintained by the EPA The inventory includes Maryland treatment plants without Bay Program. phosphorus effluent limitations during 1984-1986 and should not be considered "complete" with respect to minor discharges, the sum of which could be substantial in some basins. Plants with phosphorus effluent limitations have been excluded because the ban would not be expected to influence loadings from such plants. The total effluent volume above each monitoring station is listed in Table 2. The quantity of upstream effluent per unit of drainage area reflects the potential sensitivity of phosphorus concentrations and unit loadings at a given station to changes in point-source controls.

Consideration of flow regime is essential for interpreting river concentration data and for calculating loadings. Based upon daily flow records for the Potomac River during water years 1985 and 1986, runoff was below the long-term mean (~16 in/yr) 81% of the time. Because of the skewed runoff distribution, however, only 41% of the total flow volume occurred at a rate less than 16 in/yr. High flows (above 16 in/yr) occurred only 19% of the time but accounted for 59% of the total volume. The contrast is more extreme when higher runoff rates are considered. Runoff rates exceeding 32 in/yr accounted for 5.6% of the days and 34% of the total volume.

For a routine monthly monitoring program, the expected number of samples per year would be 9.7 (12 x .81) and 2.3 (12 x .19) in the low-flow (< 16 in/yr) and high-flow (> 16 in/yr) regimes, respectively. The

Region Accounting Unit

ଦ

-12-

Table 2River Sampling Stations and Flow Gauges

RIVER SAMPLING STATIONS - ABOVE FALL LINE STATION LOCATION	LAT	LONG	HYDROL. UNIT	FLOW STATION	STP FLOW MGD	DRAINAGE AREA MI2	:
ANAOO82 ANACOSTIA R. AT BRIDGE ON BLADENSBURG ROAD	38.941	76.943	2070010	01649500	0	72.8	
ANTO044 ANTIETAM R. AT GAUGE	39.450	77.732	2070004	01619500	7.04	281	
ANTO203 ANTIETAM R. AT BRIDGE ON POFFENBERGER ROAD	39.595	77.711	2070004	01619500	6.82	191	
CHOO626 CHOPTANK R. AT RED BRIDGES NEAR SEWELL MILLS	38.997	75.786	2060005	01491000	0	113	*
CON0005 CONOCOCHEAGUE C. AT BRIDGE ON MD. ROUTE 68	39.602	77.822	2070004	01614500	0	534	
GEO0009 GEORGES C. 1 MILE NORTH OF WESTERNPORT	39.494	79.045	2070002	01599000	0	72.4	
GUN0125 GUNPOWDER FALLS AT BRIDGE ON CROMWELL BRIDGE RD	39.493	76.532	2060003	01582500	0	240	
GWN0115 GWYNNS FALLS AT BRIDGE ON ESSEX ROAD IN VILLA NO	39.346	76.736	2060003	01589300	0.03	32.5	
MON0020 MONOCACY R. AT BRIDGE OM MD. ROUTE 28	39.244	77.441	2070009	01643000	9.66	937	
MON0155 MONOCACY R. AT BRIDGE ON REELS MILL ROAD	39.388	77.413	2070009	01643000	9.66	785	
MON0269 MONOCACY R. AT BRIDGE ON BIGGS FORD ROAD	39.480	77.389	2070009	01643000	4.69	641	
MON0528 MONOCACY R. BRIDGE ON MD. ROUTE 7, BRIDGEPORT	39.679	77.235	2070009	01639000	0	173	
NBP0103 N. BR. POTOMAC W. OF MOORES HOLLOW RD. & RTE 51	39.583	78.817	2070002	01603000	0	875	
NPA0165 NORTH BRANCH PATAPSCO RIVER ROUTE 91	39.500	76.883	2060003	01586000	0	56.6	
PAT0176 PATAPSCO R. AT WASHINGTON BLVD.(U.S. RT 1)	39.218	76.707	2060003	01589000	1.51	349	
POT1184 POTOMAC R. AT GAGING STATION ABOVE LITTLE FALLS	38.933	77.119	2070008	01646500	31.82	11560	*
POT1471 POTOMAC R. AT EASTERN TERMINUS OF WHITES FERRY	39.155	77.519	2070010	01638500	31.09	10623	
POT1830 POTOMAC R. BELOW BRIDGE ON MD. ROUTE 34	39.436	77.802	2070004	01638500	13.89	7151	
POT2386 POTOMAC R. BELOW BRIDGE ON US. RT. 522 HANCOCK	39.697	78.178	2070004	01613000	12.62	4073	
PXT0603 BRIDGE ON U.S. RT. 50	38.955	76.694	2060006	01594440	9.21	348	*
PXT0972 PATUXENT R. AT BRIDGE ON MD. 97 NEAR UNITY GAGE	39.238	77.057	2060006	01591000	0	34.8	
SUS0109 LOWER SUSQUEHANNA AT CONOWINGO DAM STATION	39.575	76.109	2050306	01578310	0	27100	*

STP. FLOW = TOTAL MD POTW DISCHARGE UPSTREAM OF STATION, EXCLUDING PLANTS WITH P EFFLUENT LIMITATIONS DRAINAGE AREA = APPROXIMATE DRAINAGE AREA AT SAMPLING STATION, ADJUSTED FROM AREA AT FLOW STATION * PAIRED WITH USGS WATER QUALITY DATA AT SAME LOCATION

				DRAINAGE
USGS FLOW GAUGING STATIONS			HYDROL.	AREA
STATION LOCATION	LAT	LONG	UNIT	MI2
01491000 CHOPTANK R NR GREENSBORO, MD	38.997	75.786	2060005	113
01578310 SUSQUEHANNA R AT CONOWINGO, MD	39.657	76.175	2050306	27100
01582500 GUNPOWDER FALLS AT GLENCOE MD	39.550	76.636	2060003	160
01586000 NB PATAPSCO R AT CEDARHURST, MD	39.500	76.883	2060003	56.6
01589300 GWYNNS FALLS AT VILLA NOVA, MD	39.346	76.734	2060003	32.5
01591000 PATUXENT R NR UNITY, MD	39.238	77.056	2060006	34.8
01594440 PATUXENT R NR BOWIE, MD	38,956	76.693	2060006	348
01599000 GEORGES C AT FRANKLIN, MD	39.494	79.045	2070002	72.4
01603000 NB POTOMAC R NR CUMBERLAND, MD	39.621	78.773	2070003	875
01614500 CONOCOCHEAGUE C AT FAIRVIEW, MD	39.708	77.833	2070004	494
01619500 ANTIETAM C NR SHARPSBURG, MD	39.450	77.731	2070004	281
01638500 POTOMAC R AT POINT OF ROCKS, MD	39.274	77.543	2070008	9651
01639000 MONOCACY R AT BRIDGEPORT, MD	39.679	77.235	2070009	173
01643000 MONOCACY R AT JUG BRIDGE NR FREDERICK, MD	39.388	77.380	2070009	817
01646500 POTOMAC R NR WASH, DC L FALLS PUMP STA	38,949	77.128	2070008	11560
01649500 NE B ANACOSTIA R AT RIVERDALE, MD	38.960	76.926	2070010	72.8

Table 3

Municipal Discharges Above River Monitoring Stations

MEAN FLOW PLANT * MGD STATION** -----------Boonsboro 0.160 ANT0044 Smithsburg 0.060 ANT0044 Funkstown 0.070 ANT0203 Hagerstown 6.000 ANT0203 Md Hoc Hagerstow 0.750 ANT0203 Montrose School 0.027 GWN0115 Frederick 4.700 MON0155 Frederick County 0.268 MON0155 Ballenger 0.404 MON0269 Crestview 0.011 MON0269 0.490 Emmitsburg MON0269 Ft Detrick 1.200 MON0269 New Windsor 0.028 MON0269 Taneytown 0.240 MON0269 Thurmont 0.550 MON0269 Union Bridge 0.069 MON0269 Westminster 1.700 MON0269 Freedom District 1.310 PAT0176 Gaither Manor 0.012 PAT0176 Mt Airy 0.174 PAT0176 Pheasant Ridge PAT0176 0.015 Damascus 0.459 POT1184 Poolesville 0.27 POT1184 Brunswick 0.330 POT1471 Middletown 0.130 POT1471 Clear Spring 0.165 POT1830 Halfway 1.100 POT1830 Cumberland 12.300 POT2386 Hancock 0.32 POT2386 Bowie St College 0.050 PXT0603 Central Farms 0.002 PXT0603 Maryland City 0.610 PXT0603 Md House of Corr 0.987 PXT0603 4.040 Parkway PXT0603 Patuxent 3.500 PXT0603 Patuxent Wildlif 0.016 PXT0603 TOTAL 42.565

* MUNICIPAL POTW'S WITHOUT P EFFLUENT LIMITS BETWEEN JULY 1984 AND MARCH 1987

** FIRST RIVER MONITORING STATION DOWNSTREAM OF PLANT

-14-

expected sampling frequency for flows exceeding 32 in/yr is .7 (12 x .056) samples/yr. Because of these relationships, routine monthly monitoring programs rarely provide sufficient samples for calculating loadings associated with high-flow regimes or for calculating total annual loadings. They may permit estimation of loadings under average and low flows, however. Based upon dilution considerations, changes in stream loadings due to changes in watershed point sources (e.g., detergent ban) should be easier to detect under low and average flows than under high flows. Lack of sufficient high-flow samples at most stations does not impose a severe limitation on the detection of changes under low flows, but makes it impossible to express the changes as percentages of the total annual or seasonal loadings.

Because of sampling frequency considerations, the analysis is restricted to low flows at 18 stations with a monthly sampling strategy. Estimates of loadings for all flow regimes are developed at 4 stations with both routine and high-flow sampling strategies (Fall-Line stations on the Choptank, Susquehanna, Patuxent, and Potomac Rivers sampled by both the MDOEP and the USGS). Loading calculations cover the period from July 1984 through March 1987, which reflects the availability of data in STORET. The USGS high-flow data at four stations extends through September 1987. Because phosphorus effluent limitations went into effect at major plants in the Patuxent basin (Patuxent, Parkway) in 1987, the period of record is restricted to July 1984-December 1986 at station PXT0603, which is downstream of these treatment plants.

The following procedures have been applied to estimate changes in phosphorus concentrations and loadings under low-flow conditions at each location:

(1) Assign a flow value to each water quality sample, pulled from the daily flow record at the closest streamflow gauge in the same river basin. Assume that daily unit runoff above the water quality station equals unit runoff above the streamflow gauge. Express runoff in inches/year (= Flow(cfs) x 13.58 / drainage area (mi²)).

-15-

- (2) Review diagnostic plots of concentration as a function of runoff and time at each station (Appendix B). Different symbols are used to distinguish pre-ban vs. post-ban samples.
- Using samples collected at flows less than the long-term mean (typically 16 in/yr), calculate mean and variance of the mean flow-weighted concentration for each time period (pre-ban, post-ban):

 $Q_m = MEAN [Q_1]$

 $C_m = MEAN [Q_i C_i] / Q_m$

 $VAR(C_m) = MEAN [Q_i C_i - Q_i C_m]^2$ (n - 1) Q_m^2

i = sample index

n = number of samples

 C_i = sample concentration (ppb)

 C_m = flow-weighted mean concentration (ppb)

 $VAR(C_m) = error variance of C_m$

 $Q_i = \text{sample flow (in/yr)}$

 Q_m = mean sampled flow (in/yr)

MEAN = average over n samples

The flow-weighted mean concentration, C_m , amounts to a ratio estimator for the mean loading (Bodo and Unny, 1983, 1984; Walker,1987a). The approximate formula for derived from classical sampling theory VAR(C_m) is (Snedecor and Cochran, 1972). Based upon results for test cases, variance estimates compare favorably with values FLUX program, which employs derived from the а jackknifing technique for estimating variances (Walker, 1987a, 1988).

- (5) Based upon the continuous daily flow record for water years 1985 and 1986, calculate the number of days and total volume in each flow interval. Apply the volume in the low-flow stratum to the mean and variance of the flow-weighted concentration to estimate the mean and variance of the loading. Express loading in terms of pounds per square mile per day (= .145 x (in/yr) x ppb) for each time period. This procedure essentially adjusts the pre-ban and post-ban loading estimates to equivalent flow conditions and assumes that the flow-weighted concentration is independent of flow within the low-flow More complex models which account for stratum. variations in concentration as a function of flow (Walker, 1987a) have also be tested and found to give similar results.
- (8) Compare pre-ban and post-ban concentration and loading estimates. Compute the error variance of the difference in loading by summing the pre-ban and post-ban error variances (since the pre-ban and post-ban samples are independent). Divide the change in loading by its standard error (square root of error variance). The result is an approximate t-statistic for testing whether the change in loading (or change in flow-weighted concentration) is significantly different from zero.

Results of these calculations for total phosphorus, ortho phosphorus, and total Kjeldahl nitrogen are given in Table 4. Calculations for Kjeldahl nitrogen serve as controls, since the ban would not be expected to influence nitrogen species.

Load reduction confidence limits are displayed for each variable and station in Figure 4. The load reduction exceeded twice the standard error at 8 stations for total phosphorus, 12 stations for ortho phosphorus, and 0 stations for total kjeldahl nitrogen. These results reflect the extent to which changes in phosphorus loadings under lowflow conditions are statistically detectable using a monthly sampling frequency.

Post-ban loadings are plotted against pre-ban loadings in Figure 5. For Kjeldahl nitrogen, pre-ban and post-ban loadings were similar and the points are randomly scattered about the Y=X line. For phosphorus species, post-ban loadings averaged about 60% of pre-ban loadings at 12 stations with pre-ban loadings exceeding .3 $1bs/mi^2$ -day. Considering that detergents typically account for 27-35% of the phosphorus in domestic wastewaters (Booman and Sedlak,1986;Jones and Hubbard,1986), it is unlikely that the detergent ban alone could account for the ~40% load reductions indicated by Figure 5. Seasonal and other factors possibly responsible for this are discussed below.

Figure 6 displays load reductions in total and ortho phosphorus against upstream municipal effluent volume (mgd/mi^2) . For a given upstream effluent volume, the expected change in loading (lbs/mi^2-day) resulting from the detergent ban can be calculated from a mass-balance:

$$DL = 8.34 \quad Q \quad DC$$

where,

DL = change in loading (lbs/mi²-day)
Q = upstream effluent volume (mgd/mi²)
DC = change in effluent concentration (ppm)

Table 4 Pre-Ban and Post-Ban Nutrient Export under Low Flows July 1984 through March 1987

TOTAL PHO	SPHORUS															
	RUNOFF	:	STRATUM	TOTAL	•••••	PRE-BA	N	••••	•••••	POST-B	AN	•••••	PRE	BAN - P	OST-BAN	• • •
STATION	EN/YR	DAYS	INCHES	INCHES	CANDI FC	DDB I	LOAD B/M12-D	rv s	AND FS	CONC DDA 1	LOAD R/MIZ-D	CV	CONC DOD 1	LOAD R/MI2+N	cv	Ŧ
ANA0082	16	642	9.94	19.85	13	72.8	0.163	0.006	12	82.7	0.186	0.194	-9.9	•0.022	-1.734 -	0.58
ANT0044	16	586	14.71	24,80	7	351.5	1.279	0.117	12	210.9	0.767	0.102	140.6	0.512	0,330	3.03
ANT0203	16	586	14.71	24.80	11	543.4	1.977	0.161	12	344.0	1.252	0.136	199,4	0.726	0.497	2.01
CH00626	16	645	9.71	17.59	36	80.8	0.176	0.161	20	59.0	0.129	0.103	21.8	0.048	0.658	1.52
CON0005	16	566	10.13	26.51	12	179.4	0.466	0.106	11	120.9	0.314	0.114	58.5	0.152	0.401	2.49
GE00009	10	5/7	9.27	30.90 24 71	18	143.5	0.340	0.247	10	Y3.3	0.225	0.187	.7 9	0.121	U.787	1.4/
GUN0115	16	650	12.35	21.35	14	109.8	0.204	0.120	13	50.4	0.233	0.096	59.4	0.164	0 337	2.97
HON0020	16	601	9.65	22.94	16	238.2	0.555	0.108	14	159.0	0.370	0.064	79.2	0.184	0.350	2.86
HON0155	16	601	9.65	22.94	13	319.2	0.743	0.234	9	166.6	0.388	0.132	152.6	0.355	0.511	1.96
HON0269	16	601	9.65	22.94	14	234.1	0.545	0.335	10	106.0	0.247	0.076	128.1	0.298	0.616	1.62
MON0528	16	621	7.32	24.28	14	241.3	0.413	0.287	10	199.1	0.340	0.389	42.2	0.072	2.461	0.41
NBP0103	32	602	19.87	43.84	11	107.7	0.515	0.104	12	80.0	0.383	0.102	27.7	0.133	0.501	2.00
NPA0165	12	550	10.74	21.38	12	49.2	0.139	0.110	11	49.3	0.140	0.118	-0.1	-0.000 -	53.989	0.02
PATUTIO	14	801	0.3/	81.14	13	142.4	0,100	0.130	14	73.A	0.133	0.077	43.3	0.034	0.704	1.99
P011471	16	619	10.12	20.80	14	184.3	0.437	0.083	12	104.1	0.247	0.127	80.2	0.190	0.252	3.97
POT 1830	16	582	10.37	24.91	15	84.1	0.217	0.052	12	90.5	0.234	0.263	-6.4	-0.017	-3.782 -	0,26
P012386	16	554	9.86	28.85	13	61.4	0.158	0.095	11	55.8	0.144	0.244	5.6	0.014	Z.645	0.38
PX10603	12	632	10.10	16.39	56	628.6	1.457	0.056	55	379.8	0.880	0.081	248.8	0.577	0.188	5,31
PXT0972	12	600	9.59	17.50	13	51.1	0.118	0.197	13	54.7	0.127	0.119	-3.7	-0.008	-3.276 -	0.31
SU50109	20	520	12.12	33.66	28	73.0	0.247	0.143	41	49.0	0.165	0.070	24.1	0.081	0.457	2.19
	OFRICAL															
	RUNDEE	•	STRATIM	TOTAL		PRE+B	AN			POST-	BAN		PRE	E-BAN - F	OST-BAN	
	BOUND	DURATION	RUNOFF	RUNOFF		CONC	LOAD			CONC	LOAD		CONC	LOAD		
STATION	1N/YR	DAYS	INCHES	INCHES	SAMPLES	PPB	L8/H12-D	CV :	SAMPLES	PPB	LB/H12-D	CV	PPB L	B/H12-D	cv	Ţ
ANA0082	16	642	9.94	19.85	13	26.2	0.059	0.183	12	25.4	0.057	0.307	0.8	0.002	10.829	0.09
ANT0044	16	586	14.71	24.80	8	339.0	1.234	0.143	12	174.6	0.635	0.155	164.4	0.598	0.338	2.95
ANT0203	16	586	14.71	24.80	11	476.8	1.735	0.161	12	269.1	0.979	0.129	207.7	0.756	0.405	2.47
CX00626	16	645	9.71	17.59	33	45.2	0.099	0.316	29	16.0	0.035	0.170	29.2	0.064	0.498	2.01
COH0005	16	566	10.13	26.51	12	153.5	0.398	0.105	11	83.3	0.216	0.138	70.2	0.182	0.283	3.53
GE00009	16	558	9.27	30,90	13	27,0	0.065 .	0.268	10	23.7	0.057	0.271	3.3	0.008	2.964	0.34
GUN0125	16	547	14.25	26.71	12	13.5	0.051	0.153	10	10.0	0.038	0.218	3.4	0.013	0.874	1.14
GUN0115	16	650	12.35	21.35	14	70.4	0.194	0.293	13	12.9	0.035	0.154	57.0	0.159	0.300	2.70
MONOUZO	16	601	9.65	22.94	. 10	193.3	0.450	0.115	14	111.7	0 717	0.125	37 3	0.097	0.521	1.06
NON0133	10	601	9.03	22.94	14	104.1	0.424	0.122	10	78.0	0.337	0.182	72.7	0.169	0.706	1.42
NON0528	16	621	7.32	24.28	13	161.2	0.276	0.213	10	144.5	0.247	0.294	16.8	0.029	3.255	0.31
NBP0103	32	602	19.87	43.84	10	50.7	0.243	0.235	11	24.1	0.115	0.175	26.6	0.127	0.476	2.10
NPA0165	12	550	10.74	21.38	12	20.2	0.057	0.122	11	22.1	0.063	0.477	-1.9	-0.005	-5.641	-0.18
PAT0176	10	696	6.37	8.14	15	74.2	0.098	0.145	14	36.2	0.048	0.175	38.1	0.051	0.329	3.04
POT1184	16	591	9.74	23.47	23	49.7	0.119	0,107	43	23.9	0.057	0.109	25.8	0.062	0.229	4.37
POT 1471	16	619	10.12	20.80	14	125.5	0.298	0.099	13	47.6	0.113	0.203	77.9	0.185	0.202	4.96
POT1830	16	582	10.37	24.91	15	59.7	0.154	0.279	12	28.9	0.075	0.211	30.7	0.079	0.578	1.73
POT2386	16	554	9.86	28.85	13	24.5	0.063	0.159	11	14.5	0.037	0.218	10.0	0.026	0.503	1.99
PX10603	12	632	10.10	16.39	49	401.3	0.930	0.0/1	55	1/2.1	0.399	0.085	-7.9	0.007	0.140	-0.78
5115010972	20	520	12 12	UC.11	28	25 8	0.087	0.163	13	12.4	0.045	0.134	13 6	0.007	0 301	3.33
		220	12.1.4	33,00		23.0	0.000	0.152			0.041	0.000	1310	0.040	0.507	5100
TOTAL K	JELDAHL	HITROGEN	ł													
	RUNOFI		STRATUN	TOTA	L	PRE-	BAN	•••••	•••••	POST	-BAN	•••••	P	RE-BAN -	POST-BAN.	••••
	BOUND	DURATIC	W RUNOFF	RUNOF	F 	CONC	LOAD			CONC	LOAD		CONC	LOAD	· ···	Ŧ
4840082	1/	5 643	0.04	10.8	5 17	957.4	2.148	0.248	12	612.5	1.375	0.109	344.9	0.774	0.715	1.40
ANT0044	10	5 584	5 14.71	24.8	0 7	640.3	2.330	0.089	12	713.3	2.596	0.220	-73.0	-0.265	-2.291	-0.44
ANT0203	5 10	5 584	5 14.71	24.8	0 11	756.1	2.752	0.086	12	941.0	3.424	0.116	-184.9	-0.673	-0.688	•1.45
CH00626	5 10	6 64	5 9.71	17.5	9 36	599.4	1.308	0,084	30	804.6	1.756	0.236	-205.2	-0.448	-0.958	-1.04
CON0002	5 1a	6 56	6 10.13	\$ 26.5	1 12	604.9	1.570	0.107	11	485.6	1.261	0.105	119.2	0.310	0.691	1.45
GE00009	2 10	6 55	8 9.27	7 30.9	0 18	707.4	1.705	0.148	10	600.8	1.448	0.132	106.6	0.257	1.236	0.81
GUND125	5 1	6 54	7 14.2	5 26.7	1 12	574.2	2.168	0.068	10	547.2	2.067	0.154	27.0	0.102	3.451	0.29
GWN0115) 1/) 1/	6 65' 6 (0	0 12.3	5 21.3	5 14	445.5	1.228	0.098	13	415.3	1.144	0.120	30.2	0.083	2.187	0.46
KON0155	5 1	6 60 6 60	1 7.0.	5 22.9 5 77 0	4 IO 4 13	1022 4	1.007	0.002	10	087 7	7 7 780	0.170	40.0	0.103	5 200	0.33
MON0265	P 1	6 60	1 9.6	5 22.9	4 14	765.3	1.782	0.224	10	552.3	1.286	0.096	213.0	0.496	0.841	1.19
HON0528	8 1	6 62	1 7.3	2 24.2	8 14	660.5	5 1.130	0,108	10	783.9	1.341	0.244	-123.4	-0.211	-1,652	-0.61
NBP0103	33	2 60	2 19.8	7 43.8	14 11	520.0	2.488	0.130	12	498.2	2.384	0.074	21.8	0.104	3.532	0.28
NPA016	51	2 55	0 10.7	4 21.3	8 12	2 527.7	7 1.494	0.094	11	485.2	1.374	0.109	42.5	0.120	1.711	0.58
PAT017	61	0 69	6 6.3	7 8.1	4 15	5 595.3	3 0,790	0.096	5 14	530.9	0.704	0.089	64.4	0,085	1.152	0.87
POT118	4 1	6 59	1 9.7	4 23.4	7 22	2 748.2	2 1.787	0.091	i 42	792.3	5 1.892	0.180	-44.1	-0,105	-3.588	-0.28
POT147	1 1	6 61	9 10.1	2 20.8	30 14	798.	7 1.894	0.091	1 13	674.8	3 1.600	0.088	123.9	0.294	0.757	1.32
POT 183	0 1	6 58	z 10.3	7 24.9	21 15	5 543.1	8 1.405	0.10	3 12	437.	5 1.131	0.166	106.2	0.275	0.880	1.14
POTZSE	o 1 	o 55	4 9.8 3 10 1	a 25.0	13 13	50Z.	4 1.297	0.09	> 11	454.0	1.172	0.144	48.4	0.125	1.667	0.60
PX1097	2 1	2 60	0 0.5	9 17.1	50 11	2 355	- J.873 9 0.875	0.040	, 54) 12	1573.1	o J.647 7 ∩.707	0.035	20.1	0.047	4.1/d 1.049	0.24
\$U\$010	9 2	52	12.1	2 33.6	56 21	8 767.	4 2.594	0.08	- 13 5 41	712.1	5 2.409	0.080	54.7	0.185	1.567	0.64
														•••••		
RUNOFF	BOUND	-	UPPER	LINIT OF	FLOW ST	RATUN CO	NSIDERED	(ROUGHL)	r = HEAN	ANNUAL I	RUNOFF)	PRE-BAN:		JULY 19	84 - NOV.	1985
DURATI	ON	•	NUMBER	OF DAYS	IN FLOW	STRATUN	, OUT OF	730 (WA	FER YEARS	1985 N	40 1986)	POST-BAX	: ·	DEC. 19	85 • MARCI	H 1987
TOTAL	M KUNOFF		RUNGFF	VOLUHE	IN STRATU	H										
SAMPLE	S	-	NUNRED	DF CON	FUTPATION		•									
CONC			FLOW-U	ELGHTED	HEAN COM	CENTRAT	- 04 14 970									
LOAD		•	.145 x	CONC (PB) x ST	RATUN RUI	NOFF (INC	CHES) / I	URATION	(DAYS)	145	= UN175 (ONV. FA	CTO2 /1 *	S/#121//1	W X 0001
cv		•	ERROR	COEFFIC	ENT OF V	ARIATION	FOR CONC	AND LO	D ESTINA	TES					-/****/(1)	- a rro)
T			I-STAT	ISTIC PO	יש ווווא אמ	POTHECT		. 11 (04		CE 14 C						

Т

•

ERROR COEFFICIENT OF VARIATION FOR CONC AND LOAD ESTIMATES T-STATISTIC FOR HULL HYPOTHESIS: CHANGE IN LOAD OR CHANGE IN CONC = 0

Figure 4 Confidence Ranges for Load Reductions Under Low-Flows

IMEANI > 2 STANDARD ERRORS

*

PRE-BAN LOAD (LBS/MI2-DAY)

The above equation assumes that phosphorus is conservative (i.e., is transported without losses from the point of discharge to the monitoring station). A previous study of data from Maryland treatment plants without phosphorus removal (Walker, 1987b) indicates an average reduction of 1.8 ppm in effluent phosphorus concentrations following the ban. Approximate 95% confidence limits for the reduction are 1.4 to 2.2 ppm. Dotted lines in Figure 6 show the predictions of the above equation for effluent reductions of 1.4 and 2.2 ppm. Dashed lines show results of regression analyses applied directly to the data.

The regression and data points generally lie above the predictions based upon mass balance. Possible contributing factors include:

- (1) The effluent inventories are incomplete because they do not reflect the cumulative effects of all minor discharges above each site. This means that actual discharge volumes above some stations are greater than assumed and that some of the points in Figure 6 should be shifted to the right.
- (2) In some cases, effects of the Maryland detergent ban may have spilled over into neighboring states because of regional supermarket distribution patterns. For example, significant reductions in total and ortho phosphorus concentrations were observed at a station on the Conococheague River (CON0005) in the Upper Potomac Basin. Most of the watershed above this station is in Pennsylvania. Detergent distribution, sales, and use in Pennsylvania towns such as Chambersburg and Greencastle may reflect conditions in Hagerstown, MD, the closest major city. Similar relationships may exist at other stations which have watersheds extending into neighboring states.
- (3) The load reductions at some stations may partially reflect other wastewater management activities (e.g., diversion, treatment plant upgrades) or non-point-source control

LOAD REDUCTION (LBS/MI2-DAY)

UPSTREAM EFFLUENT (MGD/MI2)

activities occurring in Maryland or neighboring states over the same time period. Major changes in wastewater management could not be specifically identified in these watersheds, however.

- Year-to-year variations in non-point loadings may also be (4) These are reflected by the positive intercepts important. $(.036-.049 \text{ lbs/mi}^2\text{-day})$ in the regression equations and by the statistically significant reductions in loading at stations on the Susquehanna (SUS0109), Upper Choptank (CH00626), and Upper Monocacy (MON0528), which are not impacted by Maryland point These year-to-year variations may reflect sources. differences in flow regimes, seasonal factors, and/or impacts of watershed management programs. If the intercept of the regression equation is assumed to reflect variations in background or non-point loading from one period to the next, the slope (19.3 for total and ortho phosphorus, standard error = 1.6) is equivalent to an average sewage effluent change of 19.3/8.34 or 2.3 ppm (s.e.= .19).
- (5) Many of the stations with apparent pre-ban vs. post-ban differences are in the Potomac Basin (Antietam, Monocacy Rivers). The major flood which occurred in the Potomac during November 1985 (Figure 2, one month prior to the ban) may have had significant impacts on river nutrient concentrations the following year through a scouring mechanism. Nutrients from point sources tend to accumulate in stream channels due to biological uptake and adsorption processes under low flows. Under high flows, the removal processes are reversed because of scouring. These processes have been documented in Maryland watersheds with point sources (Baltimore Department of Public Works, 1987). Following a major flushing event, stream water quality under low flows may improve because fresh adsorption surfaces are exposed and the water is in contact with Time series of data from the "cleaner" bottom deposits. Potomac River above Little Falls Dam (POT1184, at Fall-Line)

-24-

support this hypothesis (Figure 7). Sampled runoff, total

-25-

phosphorus concentration, and Kjeldahl nitrogen concentration are shown on logarithmic scales in relation to the pre-ban and post-ban periods. Consistent with techniques employed in Appendix B, the lines through the points (3-sample moving averages) are used only for display purposes and have no statistical basis. High-flow data collected by the USGS are included here. Samples collected during the November 1985 flood (peak sampled runoff rate > 316 in/yr or 2.5 on log scale) had very high total phosphorus (> 2000 ppb) and Kjeldahl nitrogen (>7900 ppb) concentrations. Because of the high flow and high concentrations, rates of nutrient transport during this period were tremendous. Concentrations of phosphorus and KJeldahl nitrogen dropped sharply following the November 1985 flood down to levels of approximately 50 and 300 ppb, respectively. Slow rates of increase followed during 1986 and 1987, possibly because of gradual re-accumulation of nutrients in the river system. Similar behavior of phosphorus and Kjeldahl nitrogen indicates that the apparent drop in phosphorus at the beginning of 1986 is more likely attributed to flow variations than to effects of the detergent ban. Although the techniques employed to calculate loadings account for variations in flow at the time of sampling, they do not account for flow "history". This phenomenon may introduce significant biases into the apparent pre-ban vs. post-ban phosphorus export changes (Figures 5 and 6) at stations in the Potomac Basin. A longer period of record and more complex analytical procedure would be required to quantify the effects. Results for the Patuxent River (Figure 8) are not influenced significantly by this factor, however, because Patuxent flows are highly regulated and a major flood did not occur in this basin immediately prior to the ban.

(6) The pre-ban (July 1984-November 1985) and post-ban (December 1985-March 1987) data are not seasonally balanced. The pre-ban data include a higher percentage of summer samples and the

Figure 7 Runoff and Concentration Time Series for Potomac River Station POT1184

Figure 8 Runoff and Concentration Time Series for Patuxent River Station PXT0603

post-ban data, a higher percentage of winter samples. influence the flow/concentration Seasonal factors may If the analysis is repeated relationship at some stations. with a seasonally balanced design (December 1984-December 1986, 1 year pre-ban and 1 year post-ban) (Table 5, Figures 9 and 10), the data scatter increases (because fewer samples are used to calculate the pre-ban and post-ban loadings) but the slope of the regression equation decreases to 15.2 (standard error = 2.0), which corresponds to an average effluent concentration of 1.8 ppm (s.e. = .24), in agreement with direct effluent measurements (mean reduction = 1.8 ppm, s.e.=.21, Walker, 1987b). A raft of alternative models which attempt to account directly for seasonal and flow effects have also been applied to the data set and found to yield similar results and conclusions.

Considering these factors, the observed responses at stream stations under low-flow conditions are in reasonable agreement with predictions based upon mass balance.

Sufficient data are not available for evaluating biological responses (e.g., as measured by chlorophyll-a) to reductions in phosphorus concentration at the river stations studied above. Ortho phosphorus concentrations at river stations above the Fall Line (Tables 4 and 5) generally exceed algal growth-limiting levels and physical factors (velocity, residence time, temperature) are more important than nutrient concentrations in regulating algal productivity. For this reason, algal growth is less of a problem and less sensitive to nutrient levels in river segments, as compared with downstream estuary and bay segments, which provide a more suitable habitat for algal growth. This is illustrated by data from Patuxent River station PXT0603, which was monitored more intensively for nutrient and biological parameters than the other river stations studied above. Despite significant reductions in phosphorus concentrations and loadings at this station between 1985 and 1986 (Figures 6 and 8), summer mean chlorophyll-a concentrations remained at very low levels (3.3 ppb in 1985 and 3.6 ppb in 1986).

-29-

Table 5

Pre-Ban and Post-Ban Nutrient Export under Low Flows December 1984 through November 1986

TOTAL P	HOSPHORUS	0	WE YEAR													
	RUXOFF	s	TRATUN	TOTAL	•••••		AN			POST-	BAN		PRI	E-BAN - F	OST-BAN.	
	BOUND I	URATION	RUNOFF	RUNOFF		CONC	LOAD			CONC	LOAD		CONC	LOAD		
STATION	IN/YR	DAYS	INCHES	INCHES	SAMPLES	PPB	LB/H12-D	cv	SAMPLES	PPS	LB/H12-D	C۷	PPS I	L8/H12-D	CV	T
ANA0082	16	642	9.94	19.85	10	72.3	0.162	0.097	11	88.7	0.199	0.213	-16.4	-0.037	-1.226	-0.82
ANT0044	16	586	14.71	24.80	7	351.5	1.279	0.117	9	224.9	0,819	0.123	126.6	0.461	0.391	2.56
ANTO203	16	586	14.71	24.80	7	494.4	1.799	0.190	9	378.2	1.376	0.168	116.2	0.423	0.974	1.03
CH00626	16	645	9.71	17.59	27	70.1	0.153	0.123	20	63.3	0.138	0.129	6.7	0.015	1.758	0.57
CONDUCS	16	566	10.13	26.51	8	170.9	0.444	0.121	8	141.6	0.368	0.152	29.3	0.076	1.021	0.98
GEODODY	16	558	9.27	30.90	11	100.7	0.243	0.132	9	94.9	0.229	0.210	5.7	0.014	4.163	0.24
GUN0125	10	547	14.25	26.71	8	50.Z	0.190	0.152	8	66.8	0.252	0.117	-16.5	-0.062	-0.660	-1.51
WONDOJO	10	650	12.35	21.35	10	96.7	0.266	0.183	10	55.6	0,153	0.120	41.1	0.113	0.461	2.17
NON0125	/ 10 : 12	001	9.03	22.94	11	254.9	0.594	0.118	11	164.2	0.382	0,100	90.7	0.211	0.377	2.65
HOU0340	· 10	(01	9.03	22.94	8	339.9	0.792	0.370	8	175.1	0.408	0.159	164.8	0.384	0.781	1.28
1000207	/ 10 14	(24	y.63	22.94	ý	256.7	0.598	0.465	9	105.1	0.245	0.093	151.7	0.353	0.787	1.27
NOROJZO	· · · · ·	021	7.32	24.28	ý	191.3	0.327	0.198	9	215.0	0.368	0.482	-23.7	-0.041	-4.654	-0.21
NOPUIUS		602	19.87	43.84	8	106.5	0.509	0.124	9	82.7	0.396	0.096	23.8	0.114	0.646	1.55
NPAU 103	12	550	10.74	21.38	8	50.1	0.142	0.145	10	51.8	0.147	0.119	-1.7	-0.005	-5.493	-0.18
PAIU1/0	10	070	0.3/	8.14	10	108.1	0.143	0.127	11	109.1	0.145	0.061	-1.0	-0.001	15.751	-0.06
P011184	10	. 591	9.74	23.47	16	95.3	0.228	0.093	20	66.8	0.159	0.087	28.5	0.068	0.373	2.68
POT1471	10	619	10.12	20.80		100.9	0.398	0.106		94.2	0.223	0.128	72.7	0.172	0.294	3.40
0073794	. 16	202	0.37	24.91	10	19.5	0.205	0.054	10	¥2.8	0.247	0.315	-16.2	-0.042	-1.8/3	-0.55
PU12300) 10 17	224	9.00	28.85		57.8	0.149	0.111	y	64.7	0.167	0.251	-6.9	-0.018	-2.524	-0.40
PA10003	1 12	632	10.10	10.39	41	585.1	1.351	0.070	54	381.5	0.884	0.083	201.7	0.467	0.255	3.92
PATUY/2	. 16	600	9.59	17.50	, y	54.2	0.126	0.288	10	56.7	0.131	0.182	-2.5	-0.006	-7.574	-0.13
2020103	< 20	520	12.12	33.00	19	69.8	0.236	0.131	13	56.1	0.190	0.105	13.7	0.046	0.794	1.26
ORTHO	PHOSPHORUS		OWE YEAR	,												
	RUNOFF		STRATUM	TOTAL		PPF-I	RAN			POST	-RAW.			F-RAN -	POST-BAN	
	BOUND	DURATION	RUNDEE	RUNDEE		CONC	LOAD	•••••		CONC	LOAD		CONC	LOAD		
STATIO		DAYS	INCHES	INCHES	SAMPLES	PPB	18/812-0	CV.	SAMPI FS	PPB	10/812-0	cv	PPS	LB/HI2-D	cv	1
ANAOOR	2 16	64.2	0 04	10 .45	10	23.4	0.053	0 233	11	26 B	0.040	0 365		-0.007	.3 346	-0.30
ANTOOL	4 14	584	14 71	24 80		370 0	1 23/	0 1/3		171 7	0.625	0 201	147 3	0 600	0 356	2 81
ANT020	- 10 - 16	586	14 71	24 80	7	454 7	1 455	0 204	,	280 4	1 053	0 163	145 2	0.601	0.550	1 50
CH0062	6 16	645	0.71	17.50	25	30.4	1.055	0 134	10	10 7	0.043	0.720	10.7	0.023	0.571	1.75
CONOOD	5 16	566	10.13	26.51	8	145.0	0.376	0.110		88.9	0.231	0.231	56.1	0.146	0.464	2.15
GEO000	0 1A	558	0 27	30.00	7	18.8	0.0/5	0 252	ő	27.0	0.055	0 311	.4.7	-0.010	-2 036	•0 49
CUN012	5 16	547	14 25	26 71	, g	10.0	0.041	0.072	,	17.1	0.0/6	0.511	-4.6	-0.005	-1 501	-0 47
GUN011	5 16	650	12 35	21 35	10	50.3	0.047	0.072	10	14 3	0.030	0.135	34.0	0.000	0 444	2 15
MOX002	0, 10 n 14	601	0 45	33.04	11	100.3	0 /47	0.347		175 7	0.301	0.103	77.3	0.170	0 500	1 04
NON015	5 16	601	9.05	22.74	7	185 6	0.402	0.102		157 0	0.344	0.711	28.6	0.047	1 4/0	0.61
HON026	9 16	601	9.65	22.94	. R	155.2	0.361	0 498	, ,	73.1	0.170	0 233	82.0	0.191	0.965	1.04
HONO52	8 16	621	7.32	24 28	· 5	151 6	0.250	0 272	,	140 2	0.255	0 380	2.0	0.004	28 835	0.03
N8P010	3 32	602	19.87	43.84	A	45.5	0 217	0 251	, 8	20 0	0 143	0 183	15 5	0.074	0 815	1 23
NPA016	5 12	550	10.74	21.38	A	20.3	0.058	0.213	10	23.7	0.047	0.105	.3.3	-0.009	-3 770	+0.26
PAT017	6 10	696	6.37	8.14	10	60.4	0.080	0.113	11	34.0	0.045	0 208	26.6	0.035	0.372	2.69
POTIIS	4 16	591	9.74	23.47	16	45.7	0.109	0.116	20	19.4	0.046	0.183	26.3	0.063	0.243	4.11
POT147	1 16	619	10.12	20.80		106.2	0.252	0.138	10	37.5	0.089	0.305	68.6	0.163	0.271	3.65
POT183	0 16	582	10.37	24.91	10	61.5	0:159	0.394	10	24.0	0.062	0.250	37.4	0.097	0.667	1.50
POT238	6 16	554	9.86	28.85		19.5	0.050	0.169		16.0	0.041	0.253	3.5	0.009	1.501	0.67
PXT060	3 12	632	10.10	16.39	40	365.3	0.846	480.0	54	171.9	0.398	0.087	193.4	0.448	0.177	5.64
PXT097	2 12	600	9.59	17.50		12.9	0.030	0.134	10	16.7	0.039	0.163	-3.R	-0.009	-0.851	+1.17
SUS010	9 20	520	12.12	33.66	19	27.1	0.092	0.184	12	10.5	0.035	0.132	16.6	0.056	0.313	3.20
					.,						0.000	J. 152	1010	0.000	0.010	5.20
TOTAL	KJELDAHL	NITROGEN	ONE YEA	R												
	RUNOFF		STRATUN	TOTAL		PRE-	BAN			POS1	-BAN		Pi	RE-BAN -	POST-BAR	
	SOUND	DURATIC	RUNOFF	RUNOFF		CONC	LOAD			CONC	LOAD		CONC	LOAD		
STATIC	N IN/YR	DAYS	INCHES	INCHES	SAMPLES	PPB	L8/H12-D	CV	SAMPLES	PPE	LB/M12-D	cv	PPB	L8/H12-0	o cv	т
404000	87 14	4/3	0.0/	10.85	40											

	SOUND	DURATION	RUNOFF	RUNOFF		CONC	1040			rour	1.040		CONC	LOAD		
STATION	IN/YR	DAYS	INCHES	THERES	SANDI FS	DDR	18/412-0	~		0000	10/412-0		0040	10/012-0		
ANA0082	16	642	9.94	19.85	10	737.4	1.655	0 153	11	44.7.2	1 441	0 127	05 7	0 21/	1 / 47	0.4
ANTO044	16	586	14.71	24.80	7	640.3	2.330	0 080		874 7	3 008	0.121	-196 7	-0 479	-1 127	-0.00
ANT0203	16	586	14.71	24.80	ż	765.4	2.785	0.122	, ,	008 5	3 636	0.151	- 100.3	-0.0/0	-0.767	-1 31
CH00626	16	645	9.71	17.59	27	617.0	1.347	0.095	20	200 1	1 080	0.088	119 0	0.257	0.102	1 4 4
CON0005	16	566	10.13	26.51		643.2	1.670	0.142		580 1	1 520	0.087	54 1	0.1/0	1 074	0.62
GE00009	16	558	9.27	30.90	11	604.4	1.457	0.101		640 B	1 544	0 120	-34.4	-0 088	.2 688	-0.37
GUN0125	16	547	14.25	26.71	8	594.3	2.245	0.107		507 5	2 257	0 166	- 30.4	-0.012	.17 157	-0.07
GWN0115	16	650	12.35	21.35	10	433.2	1,194	0.144	10	475.1	1.309	0 144	-41 0	-0.012	-7 208	-0.05
HON0020	16	601	9.65	22.94	11	823.6	1.918	0.081	11	726.8	1.603	0 071	04.0	0.226	0 877	1 15
MON0155	16	601	9.65	22.94	8	1035.0	2.411	0.202		1023.3	2,383	0.217	11.7	0.027	26 015	0.04
HON0269	16	601	9.65	22.94	9	752.7	1.753	0.348		519.4	1.210	0 002	277 7	0 543	1 1/0	0.84
MON0528	16	621	7.32	24.28	9	566.4	0.969	0.095	, 9	794.9	1.360	0.322	-228 5	.0 301	-1 146	-0.87
NBP0103	32	602	19.87	43.84	8	517.7	2.477	0.159	, 9	532.7	2.549	0.094	-15.0	-0.072	-6.405	+0.16
NPA0165	12	550	10.74	21.38	8	520.2	1.473	0.140	10	505.1	1.430	0.115	15.1	0.043	6 181	0 16
PAT0176	10	696	6.37	8.14	10	509.6	0.676	0.139	11	568.0	0.753	0.118	-58.3	-0.077	+1.672	+0 60
P0T1184	16	· 591	9.74	23.47	15	737.9	1.762	0.117	20	525.4	1,255	0.140	212.5	0.508	0.533	1 88
P011471	16	619	10.12	20.80	9	782.9	1,857	0.147	10	708.9	1.681	0.103	74.0	0.176	1.840	0.54
POT 1830	16	582	10.37	24.91	10	566.1	1.463	0.143	10	480.0	1,240	0.184	86.1	0.222	1.390	0.72
P012386	16	554	9.86	28.85	8	528.4	1.364	0.117	9	536.2	1.384	0.106	.7.8	-0.020	+10.785	+0.09
PX10603	12	632	10.10	16.39	40	1671.3	3.873	0.040	53	1574.9	3.649	0.036	96.4	0.223	0.898	1.11
PX10972	12	600	9.59	17.50	8	373.0	0.865	0.110	10	377.0	0.874	0.119	-4.0	-0.009	-15.160	+0.07
5050109	20	520	12.12	33.66	19	786.3	2.658	0.103	13	597.6	2.020	0.075	188.7	0.638	0.491	2.04
RUNOFF BO	uko	-														
DURATION			NUMBER /			TON CON	SIDEXED (I	ROUGHLY	= MEAN /	UNNUAL R	UNOFF)	PRE-BAN:	•	DEC. 198	14 - NOV.	1985
STRATUN R	UNOFF	-	RUNDER V	/0111415 1	1 CTDATING	TRATUR,	001 0F 7	50 (WAT	ER YEARS	1985 AH	0 1986)	POST-BAN	:	DEC. 198	15 - NOV.	1986
TOTAL RUN	OF F		TOTAL RI	NOFF VO	11111											
SAMPLES		-	NUMBER (DE CONCE	TPATION											
CONC			FLOW-VE	GHTED-H	EAN CONCE	NIDATIO										
LOAD			.145 X C	ONC (PP	8) x \$194	TIME DIN										
CV			ERROR CO	EFFICIE	NT OF VAR	LATION	FOR CONC I		D COTINAT	UATS)	, .145 =	UNITS C	OHV. FAC	TOR (LBS	/H12)/(1	N X PPB)
T			T-STATIS	TIC FOR	1011 UV0	0745616		UL LONG	COLIMAT	23						

ERROR COEFFICIENT OF VARIATION FOR CONC AND LOAD ESTIMATES T-STATISTIC FOR HULL HYPOTHESIS: CHANGE IN LOAD OR CHANGE IN CONC = 0 .

Figure 9 Post-Ban vs. Pre-Ban Loads Under Low Flows December 1984 through November 1986

UPSTREAM EFFLUENT (MGD/MI2)

LOADINGS AT FALL-LINE STATIONS

Loading calculations for all flow regimes have been conducted at four stations with adequate sampling data. FLUX, a computer program developed for evaluating eutrophication problems in reservoirs operated by the Army Corps of Engineers (Walker, 1987a, 1988), has been used for these calculations. The program permits estimation of loadings (means and standard errors) from intermittent sampling and a continuous daily flow record. Estimates can be developed for annual, seasonal, monthly, or daily time intervals.

Results of phosphorus loading calculations at the four MDOEP/USGS Fall Line stations are displayed in Figures 11 and 12. Monthly loading estimates have been derived for July 1984 through September 1987 by developing a concentration/flow rating curve for each station, applying it to daily flow values, and interpolating errors (differences between observed and predicted concentration at a given flow) between sampling dates. In this way, the loading estimates reflect both flow variations and temporal variations associated with seasons and/or trends. Monthly total phosphorus loadings at each station are plotted along with monthly flows in Figure 11. Figure 12 displays cumulative unit phosphorus export (lbs/mi²) and cumulative runoff (inches) vs. time.

Figure 11 illustrates the relative scales and variabilities of loading and flow at each station on logarithmic scales. As result of upstream impoundments and point sources, Patuxent River flow and loading are less variable than observed at other stations. Patuxent loadings gradually decreased over time due to the detergent ban (Dec 1985) and treatment plant upgrades (1987). The decreasing load is reflected by the decreasing slope of the cumulative load vs. time plot (Figure 12). Flows and loadings are more variable at the other stations because of less flow regulation and predominance of non-point sources. Potomac loadings are extremely flashy. For example, about 43% of the total estimated loading between July 1984 and September 1987 occurred during the November 1985 flood. This is reflected by the sudden jump in the

Figure 11Monthly Phosphorus Loads and Flows at Fall Line Stations

YEAR - MONTH

Figure 12 Cumulative Phosphorus Loads and Unit Runoff at Fall Line Stations

YEAR - MONTH

cumulative load vs. time plot. Another loading peak occurred in April of 1987. Largely because of these brief periods of high loading, cumulative unit loadings from the Potomac approach those of the Patuxent, which has a much higher upstream effluent density.

Results of phosphorus loading computations at Fall Line stations are used to develop quarterly phosphorus budgets for the Maryland portion of Chesapeake Bay in Table 6. Estimates of nonpoint loadings from the ungauged watershed (roughly 15% of the total drainage area above the Virginia state line), are developed based upon drainage area ratio and measured loadings from the Choptank River. Since portions of the ungauged watershed have higher land-use intensities than the Choptank, ungauged nonpoint loadings are probably underestimated. Point-source loadings have been estimated from effluent inventories summarized in Table 6 and ignore attenuation above the Fall Line. If attenuation above the Fall Line were considered, reductions in Bay loadings attributed to the phosphate detergent ban would be lower than those estimated below.

Impacts of the detergent ban on the Bay phosphorus budget have been estimated by applying an average effluent reduction of 1.8 ppm (Walker,1987b) to the 111.6 mgd effluent volume without phosphorus limits in 1986 (Sellars,1987). This effluent volume will be reduced to approximately 71 mgd, with implementation of phosphorus controls planned for 1987 (Harris and Walker,1985). Load reductions attributed to the detergent ban range from 2.9 to 11.1% for the January 1986 - September 1987 period. These percentages are lower (1.8 to 7.1%) with planned phosphorus removal facilities in place. Periods of higher impact correspond to periods of lower flows (e.g., third quarter 1986).

Average nutrient budgets for phosphorus and nitrogen species are detailed in Table 7. These are based upon measured concentrations at Fall Line stations for December 1985 through September 1987. This permits a focus on post-ban conditions. Monitoring by the USGS was also more intensive after 1985. Calculations reveal the importance of nonpoint sources and the Susquehanna River as factors contributing to

Table 6

QUARTERLY PHOSPHORUS BUDGET FOR MARYLAND PORTION OF CHESAPEAKE BAY - LOADS IN POUNDS PER DAY

.

DRAINAGE			WATER	SHED LOAD)s			POINT	SOURCE LO	ADS			AVERAGE		
AREA												TOTAL	INFLOW		
M12	113	348	11560	27100	7042	46163	ADJUSTED	EFFLUENT	P LIMIT	TOTAL	TOTAL	INFLOW	CONC	NOBAN	BAN
QUARTER	CHOPTANK	PATUXENT	POTOMAC	SUSQUEH	OTHER	TOTAL	TOTAL	NO	YES	POINT	LOAD	CFS	PPB	LOAD	IMPACT
					(a)	(b)	(c)	(d)	(e)					(f)	
8403	32	822	6836	21651	2022	31362	29298	6504	6256	12760	42058	35510	220	42058	0.0%
8404	13	897	3561	5859	840	11171	9107	6504	6256	12760	21867	34807	117	21867	0.0%
8501	23	725	15255	12376	1415	29794	27730	6504	6256	12760	40490	60314	125	40490	0.0%
8502	23	500	4575	9813	1404	16315	14250	6504	6256	12760	27010	43887	114	27010	0.0%
8503	32	553	1758	2910	2011	7264	5200	6504	6256	12760	17960	15314	218	17960	0.0%
8504	44	547	81631	12023	2739	96984	94920	6504	6256	12760	107680	66615	300	109355	-1.5%
8601	71	498	17718	25398	4446	48132	46744	3444	5446	8890	55634	98 407	105	57309	-2.9%
8602	28	363	2568	11800	1770	16529	15140	3444	5446	8890	24030	50443	88	25705	-6.5%
8603	3	210	609	4924	209	5956	4567	3444	5446	8890	13457	17314	144	15133	-11.1%
8604	34	350	2460	11901	2108	16854	15465	3444	5446	8890	24356	55730	81	26031	6.4%
8701	92	316	9758	8926	5729	24820	23432	3444	5446	8890	32322	68427	88	33997	-4.9%
8702	37	314	40250	16826	2309	59737	58348	3444	5446	8890	67238	72668	172	68914	-2.4%
8703	2	140	3408	6336	151	10039	8650	3444	5446	8890	17540	23390	139	19215	-8.7%

а	estimated from choptank loads based upon drainage area ratio		EFFLUENT	ACCOUNTING	(g)	
b	sum of choptank, patuxent, potomac, susquehanna, and other loads			FLOW	CONC	LOAD
с	total gauged load - upstream md point source load = approximate nonpoint load	PERIOD	P LIMIT	MGD	PPM	LBS/DAY
d	effluent load from plants without phosphorus removal facilities	< 1986	NO	141.8	5.5	6504
е	effluent load from plants with phosphorus removal facilities		YES	549.5	1.4	6256
f	load which would have occured without the detergent ban;		TOTAL	691.3	2.2	12760
	detergent load (1657 lbs/day) calculated from 111.6 mgd without p limits					
	during 1986 (Sellars,1987) and 1.8 ppm reduction in effluent p conc.	>=1986	NO	111.6	3.7	3444
g	effluent accounting compiled froms Sellars (1987), Harris and Walker (1985)		YES	579.7	1.1	5446
	(does not reflect additional plant upgrades which occured in 1987)		TOTAL	691.3	1.5	8890

.

.

Table 7

AREA NUTRIENT EXPORT (LBS/MI2-YR) RUNOFF SOURCE (a) M12 TOTAL P ORTHO P NO23N TKN TOTAL N IN/YR POTOMAC 11560 234 54 2715 1347 4062 12.44 SUSDUEHANNA 27100 181 36 3303 1877 5180 17.25 CHOPTANK 113 110 29 1707 1207 2914 10.63 PATUXENT 348 354 122 3379 1802 5181 9.01 OTHER (c) 7042 110 29 1707 1207 2914 10.63 POTOMAC 7411 1710 85987 42641 128649 10594 SUSDUEHANNA 13439 2673 245236 139361 384597 34438 CHOPTANK 34 9 528 374 902 88 ATUXENT 338 116 3222 1718 4940 231								ANNUAL
SOURCE (a) HI2 TOTAL P ORTHO P NO23N TKN TOTAL N IN/TR POTOMAC 11560 234 54 2715 1347 4062 12.44 SUSUEHANNA 27100 181 36 3303 1877 5180 17.25 CMOPTANK 113 110 29 1707 1207 2914 10.63 PATUXENT 348 354 122 3379 1802 5181 9.01 OTHER (c) 7042 110 29 1707 1207 2914 10.63 CMOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 2515 TOTAL 2334 5085 569303 50866 10056 509303 50866 UPSTREAM MD POINT 28.83 167907 207401 575368 508303 50866 UPSTREAM MD POINT 28.83 567907 207		AREA	N	UTRIENT EX	ORT (LBS	MI2-YR) -		RUNOFF
POTOMAC 11560 234 54 2715 1347 4062 12.44 SUSQUEHANNA 27100 181 36 3303 1877 5180 17.25 CHOPTANK 113 110 29 1707 1207 2914 10.63 PATUXENT 348 354 122 3379 1802 5181 9.01 OTHER CO 7042 110 29 1707 1207 2914 10.63 POTOMAC 7411 1710 85987 42661 128649 10594 SUSQUEHANNA 13439 2673 245236 139361 364597 34438 CHOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 494.0 251 OTHER C) 2122 560 32933 23287 56220 5515 OTHER C) 2128 563303 50866	SOURCE (a)	MI2	TOTAL P	ORTHO P	NO23N	TKN	TOTAL N	IN/YR
POTOMAC 11560 234 54 2715 1347 4062 12.44 SUSQUEHANNA 27100 181 36 3303 1877 5180 17.25 CHOPTANK 113 110 29 1707 1207 2914 10.63 PATUXENT 348 354 122 3379 1802 5181 9.01 OTHER (c) 7042 110 29 1707 1207 2914 10.63 POTOMAC 7411 1710 85987 42641 128649 10594 SUSQUEHANNA 13439 2673 245236 139361 384597 34438 CHOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 231 OTHER (c) 2125 506330 50866 90505 506330 50866 MOPOINT SOURCES 8890 92247 (b) 50563303 50866								
FOLDMAC 1340 213 344 2113 1347 4002 12.44 SUSQUEHANK 113 110 29 1707 1207 2914 10.63 PATUXENT 348 354 122 3379 1802 5181 9.01 OTHER (c) 7042 110 29 1707 1207 2914 10.63 PATUXENT 348 354 122 3379 1802 5181 9.01 OTHER (c) 7042 110 29 1707 1207 2914 10.63 VEXENT 343 354 122 3379 1802 5181 9.01 SUSQUEHANNA 13439 2673 245236 139361 384597 3438 CHOPTANK 34 9 528 374 902 88 PATUXENT 338 116 32227 1718 4940 231 OTHER (c) 2132 5666 32933 230866 <t< td=""><td>DOTOMAC</td><td>11540</td><td>27/</td><td>5/</td><td>2715</td><td>17/7</td><td>6042</td><td>12 //</td></t<>	DOTOMAC	11540	27/	5/	2715	17/7	6042	12 //
ausdochnamik 2/100 101 303 303 107 103 102 PATUXENT 348 354 122 3379 1802 5181 9.01 OTHER (c) 7042 110 29 1707 1207 2914 10.63 POTOMAC 7411 1710 85987 42661 128649 10594 SUSQUEHANNA 13439 2673 245236 139361 384597 34438 CMOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 231 OTHER (c) 2122 560 32933 23287 56220 5515 TOTAL 23344 5068 36797 207401 57538 50866 UPSTREAM MD POINT 1389 6005 (b) 569303 50866 MORPOINT SOURCES 8890 92247 (b) 12.9% 30845 661550 X MARYLAND POINT 28.8%<	SUSCIENANNA	27100	191	74	2713	1947	5190	12.44
CHOFTARK TIS TID 2.9 TIO 1207 2.714 10.353 DTHER 113 TID 2.9 TIO TED 2.914 10.35 DTHER (c) 7042 TID 2.9 TIOT TEO 2.914 10.35 POTOMAC 7411 1710 2.9 TIOT TEO 2.914 10.63 POTOMAC 7411 1710 2.9 TIOT 1207 2.914 10.63 POTOMAC 7411 1710 2.9 TIOT 1207 2.914 10.63 POTOMAC 7411 1710 2.9 TIOT 2.0 16.3 COPTANK 3.4 9 5.26 3.74 902 88 PATUXENT 338 116 3.222 1718 4.940 2.31 TOTAL 2.0 2.135 5.69303 5.0866 10.955 5.69303 5.0866 MDPOINT SOUCES 8890 92247 (b)	CUODTANK	27100	101	20	1707	10//	2016	17.25
PAILARIN 346 334 122 3373 1002 3161 9.01 OTHER (c) 7042 110 29 1707 1207 2914 10.63 NUTRIENT LOAD (LBS/DAY) FLOW (CFS) POTOMAC 7411 1710 85987 42661 128649 10594 SUSQUEHANNA 13439 2673 245236 139361 384597 34438 COMMAC 7411 1710 85987 42661 128649 10594 SUSQUEHANNA 13439 2673 245236 139361 384597 34438 COMPTAINK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 231 OTHAL 23344 5068 367907 207401 575308 50866 UPSTICAL 23344 5068 367907 207401 575308 50866 UPSTICAL 23845 661550 50 50	DATUVENT	7/9	75/	422	7770	1207	2914 E101	10.05
OTHER (C) 7042 110 29 1707 1207 2914 10.53 POTOMAC 7411 1710 85987 42661 128649 10594 SUSQUEHANNA 13439 2673 245236 139361 384597 34438 CMOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 231 OTHER (c) 2122 560 32933 23287 56220 5515 TOTAL 23344 5068 367907 207401 575308 50866 MD POINT 1389 6065 (b) ADJUSTED TOTAL (d) 21955 569303 50866 MOPOINT SOURCES 8890 92247 (b) 10TAL LOAD 30845 661550 % MARYLAND POINT 28.8% 13.9% NONPOINT + SUSQUEHAN 71.2% 86.1%	PATUXENT OTUED (a)	240 70/ 2	304	122	1207	1002	2017	9.01
NUTRIENT LOAD (LBS/DAY) FLOW (CFS) POTOMAC 7411 1710 85987 42661 128649 10594 SUSQUEHANNA 13439 2673 245236 139361 384597 34438 CHOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 231 OTHER (c) 2122 560 32933 23287 56220 5515 TOTAL 23344 5068 367907 207401 575308 50866 MPSTREAM MD POINT 1389 6005 (b) ADJUSTED TOTAL (d) 21955 569303 50866 MD POINT SOURCES 8890 92247 (b) 70741 20.8% 13.9% % NONPOINT + SUSQUEHAN 71.2% 86.1% 13.9% 86.1%	UTHER (C)	7042	110	29	1707	1207	2914	10.05
POTOMAC 7411 1710 85987 42661 128649 10594 SUSQUEMANNA 13439 2673 245236 139361 384597 34438 CHOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 231 OTHER (c) 2122 560 32933 23287 56220 5515 TOTAL 23344 5068 367907 207401 575308 50866 MPSTREAM MD POINT 1389 6005 (b) 50303 50866 MD POINT SOURCES 8890 92247 (b) 575308 50866 MOPOINT SOURCES 8890 92247 (b) 575308 50866 MARYLAND POINT 28.8% 13.9% 86.1% 13.9% % NONPOINT + SUSQUEHAN 71.2% 86.1% 13.9% a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to S				NUTRIEN	LOAD (LB	S/DAY)		FLOW (CFS)
SUSQUEHANNA 13439 2673 245236 139361 384597 34438 CHOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 231 OTHER (c) 2122 560 32931 25287 56220 5515 TOTAL 23344 5068 367907 207401 575308 50866 UPSTREAM MD POINT 1389 6005 (b) 0005 (b) 0005 (b) 0005 (b) ADJUSTED TOTAL (c) 21955 569303 50866 0661550 0005 (c) MARYLAND POINT 28.8% 13.9% 86.1% 000111 00845 661550 % MARYLAND POINT 28.8% 13.9% 86.1% 000111 00045 116 a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river statio	POTOMAC		7411	1710	85987	42661	128649	10594
CHOPTANK 34 9 528 374 902 88 PATUXENT 338 116 3222 1718 4940 231 OTHER (c) 2122 560 32933 23287 5620 5515 TOTAL 23344 5068 367907 207401 575308 50866 UPSTREAM MD POINT 1389 6005 (b) ADJUSTED TOTAL (d) 21955 569303 50866 MD POINT SOURCES 8890 92247 (b) 7074 5661550 % MARYLAND POINT 28.8% 13.9% 86.1%	SUSQUEHANNA		13439	2673	245236	139361	384597	34438
PATUXENT 338 116 3222 1718 4940 231 OTHER (c) 2122 560 32933 23287 56220 5515 TOTAL 23344 5068 367907 207401 575308 50866 UPSTREAM MD POINT 1389 6005 (b) ADJUSTED TOTAL (d) 21955 569303 50866 MD POINT SOURCES 8890 92247 (b) 5010 508366 50866 M POINT SOURCES 8890 92247 (b) 661550 509303 50866 % NONPOINT + SUSQUEHAN 71.2% 86.1% 661550 30845 50866 309% a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations 50 b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd 60 c "other" river loads reduced by upstream md point loads = approximate nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + s	CHOPTANK		34	9	528	374	902	88
OTHER (c) 2122 560 32933 23287 56220 5515 TOTAL 23344 5068 367907 207401 575308 50866 UPSTREAM MD POINT 1389 6005 (b) ADJUSTED TOTAL (d) 21955 569303 50866 MD POINT SOURCES 8890 92247 (b) 7074LLOAD 30845 661550 % MARYLAND POINT 28.8% 13.9% 86.1% ************************************	PATUXENT		338	116	3222	1718	4940	231
TOTAL 23344 5068 367907 207401 575308 50866 UPSTREAM MD POINT 1389 6005 (b) ADJUSTED TOTAL (d) 21955 569303 50866 MD POINT SOURCES 8890 92247 (b) 50703 50866 MO POINT SOURCES 8890 92247 (b) 661550 569303 50866 % MARYLAND POINT 28.8% 13.9% % 86.1% 50866 569303 50866 a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads reduced by upstream md point loads = approximate nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads = LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 <td< td=""><td>OTHER (c)</td><td></td><td>2122</td><td>560</td><td>32933</td><td>23287</td><td>56220</td><td>5515</td></td<>	OTHER (c)		2122	560	32933	23287	56220	5515
UPSTREAM ND POINT 1389 6005 (b) ADJUSTED TOTAL (d) 21955 569303 50866 MD POINT SOURCES 8890 92247 (b) TOTAL LOAD 30845 661550 % MARYLAND POINT 28.8% 13.9% % NONPOINT + SUSQUEHAN 71.2% 86.1% 	TOTAL		23344	5068	367907	207401	575308	50866
ADJUSTED TOTAL (d) 21955 569303 50866 MD POINT SOURCES 8890 92247 (b) TOTAL LOAD 30845 661550 % MARYLAND POINT 28.8% 13.9% % NONPOINT + SUSQUEHAN 71.2% 86.1% a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads = approximate nonpoint loads + susquehanna point loads = approximate nonpoint loads - susquehanna point loads = ADAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027	UPSTREAM MD	POINT	1389				6005	(b)
MD POINT SOURCES 8890 92247 (b) TOTAL LOAD 30845 661550 % MARYLAND POINT 28.8% 13.9% % NONPOINT + SUSQUEHAN 71.2% 86.1% a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.068 0.074 0.066 0.027	ADJUSTED TO	TAL (d)	21955				569303	50866
TOTAL LOAD 30845 661550 % MARYLAND POINT 28.8% 13.9% % NONPOINT + SUSQUEHAN 71.2% 86.1% a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa,1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064	MD POINT SOL	JRCES	8890				92247	(b)
 % MARYLAND POINT 28.8% 13.9% % NONPOINT + SUSQUEHAN 71.2% 86.1% a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027 	TOTAL LOAD		30845				661550	
 % MARYLAND POINT 28.8% 13.9% % NONPOINT + SUSQUEHAN 71.2% 86.1% a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027 								
 % NONPOINT + SUSQUEHAN 71.2% 86.1% a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027 	% MARYLAND	POINT	28.8%				13.9%	6
 a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa,1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027 	% NONPOINT	SUSQUEHAN	71.2%				86.1%	6
a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027								
 a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027 								
a river loads estimated from concentration/runoff rating curves developed for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N VOTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064								
for December 1985 - September 1987, mapped onto daily flow distribution for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027	а	river loads	estimated	from conce	entration/	runoff rat	ing curve	es developed
for October 1984 to Sept 1987; measured at usgs fall line stations b total nitrogen conc. of 16 ppm assumed for point sources (usepa,1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027		for Decembe	er 1985 - s	eptember 19	987, mappe	d onto dai	ly flow c	listribution
b total nitrogen conc. of 16 ppm assumed for point sources (usepa,1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064		for October	• 1984 to S	ept 1987; r	measured a	t usgs fal	l line st	ations
b total nitrogen conc. of 16 ppm assumed for point sources (usepa, 1987) md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064								
md point source flow above river stations = 45 mgd, total = 691 mgd c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064	b	total nitro	gen conc.	of 16 ppm a	assumed fo	r point so	ources (us	epa,1987)
c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads 		md point so	ource flow	above river	• stations	= 45 mgd,	total =	691 mgd
c "other" river loads estimated from choptank export factors under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027								
under-estimates nonpoint loads from urban areas below the fall line d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064	с	"other" riv	ver loads e	stimated fr	om chopta	nk export	factors	
d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064		under-estim	ates nonpo	int loads f	from urban	areas bel	ow the fa	ıll line
d measured river loads reduced by upstream md point loads = approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027							*	
= approximate nonpoint loads + susquehanna point loads LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027	d	measured ri	ver loads	reduced by	upstream	md point l	oads	
LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027		= approxima	ite nonpoin	it loads + s	susquehann	a point lo	ads	
LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027								
LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027								
LOAD ESTIMATE COEFFICIENT OF VARIATION = STANDARD ERROR / MEAN SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027								
SOURCE TOTAL P ORTHO P NO23N TKN POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027	LOAD ESTIMAT	TE COEFFICIE	NT OF VARI	ATION = STA	NDARD ERR	OR / MEAN		
POTOMAC 0.144 0.061 0.047 0.126 SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027	SOURCE		TOTAL P	ORTHO P	NO23N	TKN		
SUSQUEHANNA 0.094 0.160 0.039 0.089 CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027	POTOMAC		0.144	0.061	0.047	0.126		
CHOPTANK 0.088 0.074 0.046 0.064 PATUXENT 0.060 0.058 0.033 0.027	SUSQUEHANNA		0,094	0.160	0.039	0.089		
PATUXENT 0.060 0.058 0.033 0.027	CHOPTANK		0.088	0.074	0.046	0.064		
	PATUXENT		0.060	0.058	0.033	0.027		

•

NUTRIENT BUDGET FOR MARYLAND PORTION OF CHESAPEAKE BAY

Bay eutrophication. Point sources in Maryland (including Blue Plains) account for an estimated 28.8% of the total phosphorus loading and 13.9% of the total nitrogen loading to the Maryland portion of the Bay. Nonpoint sources are especially important for nitrogen, which limits summer algal productivity throughout most of the Bay (USEPA,1987). Nitrogen export from the Susquehanna (5180 lbs/mi²-yr) equals that from the Patuxent (5181 lbs/mi²-yr), despite the relative importance of point sources in the Patuxent. These nutrient balances are developed for a period of relatively low runoff (e.g., Potomac runoff 12.4 in/yr vs. average of 16 in/yr). Point sources would be less important in balances developed for periods of average or above-average runoff. The balances do not consider nutrient releases from bottom sediments or atmospheric loadings directly on the Bay surface. Consideration of these factors would further diminish the relative importance of point sources.

A recent report by the Environmental Defense Fund (EDF) (Fisher et al, 1988) evaluates the potential significance of nitrogen loadings in acid rain as factors contributing to eutrophication in Chesapeake Bay and other coastal waters. The following comparison is made between nitrogen loading estimates developed by EDF and those presented in Table 7 (adjusted to common units):

Annual	Total	Nitrogen	Loading	(million	Kg/yr)
		EDF	Table 7		
Point		32.9	15.3		
NonPoir	nt	66.8	94.5		
Atmosph	neric	12.9	(not esti	imated)	
Total		112.9	109.8		

Although the totals are similar, the bases for these calculations are considerably different. The EDF values, based primarily upon model projections developed by the EPA (1983), are for the entire Chesapeake Bay and an average hydrologic year. The Table 7 values are for the Maryland Portion of the Bay only and are based upon measured (vs. modelled) nutrient loadings for a period of below-average runoff (12.4 vs. 16 in/yr in the Potomac, Figure 1). The drainage area of the Maryland portion of the Bay accounts for approximately 72% of the total drainage area. If the balances in Table 7 were adjusted to the same basis as the EDF estimates (complete bay, normal hydrologic year, including atmospheric loadings) the total nitrogen loading would be considerably higher than that reported by EDF, perhaps by 50% or more.

It is possible that the modeling results used to develop previous nitrogen budgets do not reflect recent increasing trends in nitrate levels in the Susquehanna River (see Figure 31 below). Similar trends may exist in other tributaries. The fact that actual nitrogen loadings may be higher than assumed by EDF provides further support for EDF conclusions regarding the relative importance of nitrogen loadings from nonpoint sources (partially attributed to acid rain, fertilizers, etc.) as factors contributing to Bay eutrophication.

BAY AND ESTUARY STATIONS

Bay and estuary stations retrieved from the EPA's Chesapeake Bay data base are identified in Figures 13 and 14, respectively. Station codes (abbreviated for plotting purposes) and locations are listed in Table 8. All of these data were collected by the MDOEP between July 1984 and July 1987. Data summaries by station, season, and year are given in Appendix C. Average concentrations are listed by Bay Segment and month in Appendices D and E and displayed in Appendix F.

Bay stations (22 in number) are oriented along the main north-south axis from the Susquehanna River inflow to Virginia state line below the mouth of the Potomac River (Figure 13). Lateral transects (3 stations "W", "C", and "E") are taken at four locations between Annapolis and the mouth of the Patuxent River. The first character of the Bay station code reflects the Bay segment number, according to the scheme used historically for modeling and data management purposes. Bay stations are sampled 20 times per year (biweekly in Spring and Summer, monthly in Fall and Winter). Although sampling is done with depth, the analysis below is restricted to data from the upper mixed layer (less than or equal to 3 meters depth). For each station and date, values have been

-39-

Table 8

,

Bay and Estuary Station Codes and Coordinates

STATION	ABBREV.	LATITUDE	LONGITUDE
BAY STAT	IONS		
CB1.1	11	39.545	~ 76.082
CB2.1	21	39.440	76.025
CB2.2	22	39.347	76.175
CB3.1	31	39.248	76.238
CB3.2	32	39.163	76.306
CB3.3C	33C	38.995	76.360
CB3.3E	33E	39.002	76.346
CB3.3W	33W	39.003	76.388
CB4.1C	41C	38.825	76.400
CB4.1E	41E	38.816	76.371
CB4.1W	41W	38.813	76.463
CB4.2C	42C	38.645	76.418
CB4.2E	42E	38.645	76.400
CB4.2W	42W	38.643	76.502
CB4.3C	43C	38.556	76.435
CB4.3E	43E	38.556	76.390
CB4.3W	43W	38.556	76.493
CB4.4	44	38.413	76.343
CB5.1	51	38.318	76.293
CB5.2	52	38.137	76.228
CB5.3	53	37.912	76.168
LE2.3	LE23	38.021	76.348
ESTUARY	STATIONS		
MEE1.1	EE11	38.883	76.250
MEE2.1	EE21	38.650	76.275
MEE3.1	EE31	38.200	75.975
MET4.1	ET41	39.258	75.925
MET4.2	ET42	38.992	76.217
MET5.1	ET51	38.583	76.050
MET5.2	ET52	38.567	76.058
MWT1.1	WT11	39.433	76.242
MWT2.1	WT21	39.383	76.342
MWT3.1	WT31	39.300	76.400
MWT4.1	WT41	39.283	76.450
MWT5.1	WT51	39.208	76.525
MWT6.1	WT61	39.075	76.475
MWT7.1	WT71	39.017	76.508
MWT8.1	WT81	38.933	76.525
MWT8.2	WT82	38.883	76.533
MWT8.3	WT83	38.850	76.533
MLE2.2	LE22	38.167	76.733

averaged within this depth range prior to downloading and subsequent analysis. Separate data sets have been created and downloaded for analysis of dissolved oxygen depletion in Bay bottom waters.

The estuary stations shown in Figure 14 are located in tidal portions of rivers and streams draining into the Bay. Out of approximately 44 Maryland estuary stations included in the current monitoring program (based upon the EPA station index), 18 stations on the EPA data tape with phosphorus, chlorophyll-a, and related water quality data for 1985 and 1986 are considered here. Monitoring frequency is either monthly year-round or monthly with biweekly sampling during Spring and Summer (similar to Bay stations). This data subset does not reflect the complete extent of estuary monitoring over this period. In particular, intensive MDOE monitoring data from the Patuxent Additional data requests would have to be Estuary are not included. filed in order to permit analysis of Patuxent or other estuary data not included on the EPA tape.

STATISTICAL CONTRASTS

One question to be addressed is whether "statistically significant" differences can be detected in phosphorus and related water quality components between 1985 and 1986. This question is not equivalent to asking whether or not the detergent ban influenced Bay water quality, since year-to-year changes can also be attributed to other factors (e.g., hydrology, treatment plant upgrades). It is not equivalent to asking whether there is a "trend" in Bay conditions, since longer term data would be required for such a purpose. Finally, it is not equivalent to asking whether 1985 conditions were actually different from 1986 conditions, since such variations may have occurred but were not large enough to be detected with the monitoring program design.

Statistical contrasts between 1985 and 1986 data are summarized in Table 9. The tests compare the seasonal (spring and summer) distributions of measurements at each station using a standard t-test (Montgomery and Loftis, 1987). Each test is based upon at least 3

4	4-	-		

STATIS	STICAL	CONTRAS	T OF	* 1985 (SPR	PRE-BAN) ING	AND 1986	(POST	-BAN) M	EANS BY	SEASON A	ND STAT	ION	- LINEAR	SCALES
STATION	TOTAL	P ORTHO	Р	DIS P	CHL-A	SECCHI	COND	TOTAL	P ORTHO	P DIS	P CHL	A	SECCHI	COND
CB1.1				14				1	7	1	3			
CB2.1								2	4					
CB2.2														
CB3.1								1	7				-0.2	3293
CB3.2														2967
CB3.3C		17		28		0.2					-	·12		
CB3.3E				11										
CB3.3W		17	4	9			3651							
CB4.1C		26		13										
CB4.1E							2883							
CB4.1W					8		3821							
CB4.2C				9										
CB4.2E		13		16			3171						- 1	
CB4.2W				20			3248							
CB4.3C							3528		_				-0.5	
CB4.3E			5	15			2994		7				<u> </u>	
CB4.3W				25			3203						-0.4	
CB4.4		12		11										
CB5.1											. –			
CB5.2			1					1	4		15			
CB5.3													07	
LE2.3		28					2201	-	7				-0.7	
MEE1.1						-0.9	2204	· .	2				-0.0	
MEE2.1				4.0			1305					_ 4		
MEE3.1				12			1662					•0		
MET4.1				15										
MET4.2		35		13										
MET5.1		42			11	0.2	20/5	r					-03	
ME15.2			,	15		-0.2	2045	,		11			0.5	
MLEZ.Z			o	15	17					• •	13			
MWE1.1		FIGIENT			4.5					6				
	INSUR	CLOICNE	DAT	A				· · ·		6				
MUTCA 1	INSU	FIGIENI	UAI	A				-		U				
						0 4								
						0.4				10			0.3	
MUT7 1	TNCH	FICIENT	DAT	۵				·>						
MUTS 1	INSU	TUTER	25	~										
MUTS 2														
MWT8 3														
COUNT		8	5	15	3	4	12	2	6	4	3	2	8	2
SPRING	=APR II	- JUNE	-	TOTAL P	= TOTAL	PHOSPHORU	S (PPE	3)	CHL-A	= CHLOR	OPHYLL-	A (P	PB)	
SUMMER	=JULY	SEPT		ORTHO-P	= ORTHO	PHOSPHORU	S (PPE	3)	SECCH	I =SECCH	I DEPTH	(ME	TERS)	
				DIS-P =	TOTAL D	SSOLVED P	. (PPE	3)	COND	= CONDU	CTIVITY	(UH	IOS)	

-

Table 👂

VALUES = ARITHMETIC MEAN (1985) - ARITHMETIC MEAN (1986) VALUES SHOWN ARE DIFFERENT FROM 0.0 AT SIGNIFICANCE LEVEL OF .10, BASED UPON t-TEST

POSITIVE VALUES INDICATE THAT MEANS WERE HIGHER IN 1985 NEGATIVE VALUES INDICATE THAT MEANS WERE HIGHER IN 1986 samples per station-season, although most involve 6 samples. Table 9 lists changes in seasonal mean concentrations (1985 - 1986) which are significantly different from zero at a significance level of .10. Each positive value indicates that there is an approximate 90% chance that the 1986 mean was lower than the 1985 mean. Seasonal means used for these comparisons are listed in Appendix C.

As discussed by Montgomery and Loftis (1987), the use of t-test for detecting changes or trends in water quality measurements is subject to Seasonality, lack of normal distribution, and several limitations. serial dependence are three factors relevant here. Seasonality has been considered by averaging measurements separately within each season before comparing years, although tests using combined spring and summer data give results which are qualitatively similar to those shown in Data of this type are positively skewed and a logarithmic Table 9. transformation can reduce skewness and increase the power of the test. Montgomery and Loftis (1987) indicate, however, that the t-test is robust to skewness as long as the sample sizes are equal and distribution shapes are similar (generally the case here). A repeat of the tests using log-transformed data (Table 10) yields a few more significant differences, but results are not qualitatively different. The remaining factor (serial dependence) is more difficult to deal with, The effect of such especially with only 3 to 6 samples per season. dependence, if present, would be to artificially inflate the number of significant differences identified.

Subject to the above limitations, test results are summarized and interpreted below. Results refer to the log-transformed tests (Table 10), which are slightly more powerful than the linear tests (Table 9).

(1) Spring contrasts (37 stations) indicated significant decreases in total phosphorus (10 stations), ortho P (6), dissolved P (14), chlorophyll-a (3), and conductivity (12). Significant increases in these variables were detected at no stations. Secchi depth increased at 2 stations and decreased at 2 stations. At the .10 significance level, 3.7 "differences"

-45-

Tal	ble	10

STATISTICAL CONTRAST OF 1985 (PRE-BAN) AND 1986 (POST-BAN) MEANS BY SEASON AND STATION - LOGIO SCALES

. _

			SPR1	NG					SUMI	MER		
STATION	TOTAL P O	RTHO P	DIS P	CHL-A	SECCHI	COND 1	TOTAL P	ORTHO P	DIS P	CHL-A	SECCHI	COND
CB1.1			0.40				0.15					
СВ2.1							0.13	0.36				0.52
СВ2.2												
CB3.1							0.11				-0.09	0.11
CB3.2	ФР.											0.07
CB3.3C	0.17		0.44		0.08					-0.32		
CB3.3E	0.16		0.39			0.11						
CB3.3W	0.19	0.26	0.30									
CB4.1C	0.31		0.41			0.07						
CB4.1E						0.10	0.20					
CB4.1W				0.24								
CB4.2C			0.39			0.08						
CB4.2E	0.25		0.44			0.08					-0.21	
CB4.2W			0.52			0.08		0.38				
CB4.3C						0.07					-0.12	
CB4.3E		0.36	0.49			0.08	0.10					
CB4.3W			0.53								-0.14	
CB4.4	0.24		0.34									
CB5.1	0.36	0.21	0.50									
CB5.2		0.18					0.20		0.39			
CB5.3												
LE2.3	0.50										-0.17	
MEE1.1					-0.19	0.05	0.17				-0.18	
MEE2.1						0.03						
MEE3.1			0.15			0.03				-0.35		
MET4.1			0.13									
MET4.2	0.24											
MET5.1	0.14			0.29								
MET5.2					-0.11	0.05					-0.15	
MLE2.2		0.20						0.32				
MWT1.1				0.98					0.15			
MWT2.1	INSUFFICI	ENT DAT	۰			>		0.40			0.55	
MWT3.1	INSUFFICI	ENT DATA	۱			>		0.40				
MWT4.1								0.73				
MWT5.1					0.15							
MWT6.1								0.40			0.14	
MWT7.1	INSUFFIC	IENT DAT	۹	•		>						
MWT8.1		0.48										
MWT8.2												
MWT8.3												
COUNT	10	6	14	3	4	12	7	7	2	2	9	3
SPRING	=APRIL-JU	NE '	TOTAL P	= TOTAL	PHOSPHOR	US (PPB)		CHL-A =	CHLOROPH	YLL-A (I	PPB)	
SUMMER	=JULY-SEP	г	ORTHO-P	= ORTHO	PHOSPHOR	US (PPB)		SECCHI =	SECCHI D	EPTH (M	ETERS)	
		ι	DIS-P =	TOTAL D	ISSOLVED	P. (PPB)		COND =	CONDUCTI	VITY (U	HOS)	
VALUES	= MEAN (LO	OG10 198	5) - MEA	N (LOG1	0 1986)							

VALUES SHOWN ARE DIFFERENT FROM 0.0 AT SIGNIFICANCE LEVEL OF .10, BASED UPON t-TEST

POSITIVE VALUES INDICATE THAT MEANS WERE HIGHER IN 1985

NEGATIVE VALUES INDICATE THAT MEANS WERE HIGHER IN 1986

would be expected by chance for each variable if the 1985 and 1986 population means were actually equal at each station.

- (2) Summer contrasts (40 stations) indicated significant decreases in total phosphorus (7 stations), ortho phosphorus (7), dissolved phosphorus (2), and conductivity (3). Chlorophyll-a increased at 2 stations. Secchi depth increased at 7 stations and decreased at 2 stations. At the .10 significance level, 4 "differences" would be expected by chance for each variable.
- (3) Generally, greater numbers of significant differences between 1985 and 1986 were detected in the spring comparisons than in the summer comparisons. As indicated in Table 1, winter and spring runoff rates were higher in 1986 (7.3 and 4.1 inches, total 11.4 inches) than in 1985 (4.7 and 3.5 inches, total 8.2 inches). Decreases in spring conductivity at 12 stations would reflect these flow variations. Lower conductivities would be expected during periods of higher flow because of less salinity intrusion.
- (4) Out of 37 spring and 40 summer contrasts, a significant reduction in phosphorus (any specie) was accompanied by a significant reduction in chlorophyll-a in only one instance (Station MET5.1, Choptank River, spring contrast). Spring phosphorus apparently decreased from 158 to 117 ppb and chlorophyll-a decreased from 23 ppb to 12 ppb. Higher runoff (Figure 2) during early 1986 could contribute to these Time series of phosphorus, chlorophyll-a, and flow changes. at this station are displayed in Figure 15. Flows are derived from the USGS gauge upstream on the Choptank River (01491000). In 1986, spring samples were taken during a period off falling flows and rising phosphorus and chlorophyll-a concentrations. High winter flows would promote flushing of nutrients and algae from the headwaters of the estuary. In late Spring and Summer, no differences between 1985 and 1986 are evident. Apparent differences between Spring 1985 and 1986 at this

Figure 15 Phosphorus, Chlorophyll-a, and Flow and Chlorophyll-a Time Series Choptank River Station MET5.1

station seem to be related to differences in the hydrograph, rather than to changes in point-source inputs.

The significantly lower concentrations of phosphorus species measured at several Bay and Estuary stations during 1986 are expected based upon changes in phosphorus loading over this period (Table 6). As a result of changes in flow, nonpoint loadings, and treatment plant upgrades, reductions in phosphorus loadings during 1986 (vs. 1985) were greater than those attributed to the detergent ban, as illustrated below:

	Loa	ding (1b	s/day))	Inflow Concentration (
		%	Redu	ction	% Reduction					
Quarter	1985	1986	Ban	Total	1985	1986	Ban	Total		
Spring	27,010	24,030	6.5%	11.0%	114	88	6.7%	22.8%		
Summer	17,960	13,457	11.1%	25.1%	218	144	11.6%	33.9%		

Observed reductions in Bay phosphorus concentrations between 1985 and 1986 reflect the combined influences of these changes in loading and other factors driving nutrient cycling within the Bay.

NUTRIENT AND ALGAE TIME SERIES

A better appreciation for variations in Bay conditions can be derived by considering the complete record from July 1984 through July 1987. Monthly time series by segment are shown in Appendix F. Figures 16 and 17 compare seasonal-average phosphorus and chlorophyll-a concentrations at individual stations. The first digit of each station code corresponds to the Bay segment in which the station is located. The monitoring period permits estimation of spring means for three years (1985-1987) and summer means for four years (1984-1987). Estimates of summer means for 1987 are based upon July measurements only (vs. July-September for other years). Symbols (*) in Figures 16 and 17 indicate whether year-to-year variations in seasonal means are significant (p=.10), based upon a one-way analysis of variance. Dotted lines in Figure 17 show the 15 ppb management goal for chlorophyll-a, which has

Figure 16 Total Phosphorus Means - Bay Stations - 1984-1987

Figure 17 Chlorophyll-a Means - Bay Stations - 1984-1987

been established as a habitat requirement for submerged aquatic vegetation in shallow regions of the Bay (USEPA, 1987).

One distinction between 1987 and the previous years with respect to chlorophyll-a is the algal bloom which developed in Segments 4 and 5 during Spring of 1987. In Segment 5, chlorophyll-a concentrations averaged above 30 ppb for a two-month period. As described below, this bloom was followed by rapid depletion of dissolved oxygen from bottom waters in this region of the Bay. Total phosphorus concentrations were also higher in Segment 5 during Spring of 1987 (Figure 16), but not in proportion to the differences in chlorophyll-a (Figure 17).

As indicated in Table 6, the average inflow phosphorus concentration for the Maryland portion of the Bay was 170 ppb in Spring of 1987, as compared with 86 ppb in 1986 and 117 ppb in 1985. Corresponding spring-average loadings were 72,668, 50,443, and 43,887 The higher inflow concentration and loading lbs/day, respectively. primarily reflect high runoff from the Susquehanna and Potomac in April of 1987 (Figure 2). Downstream transport of high inorganic nitrogen concentrations (> 2000 ppb) observed in Segment 1 (mouth of the Susquehanna) during March 1987 (Appendix F-4) may also have contributed to the spring bloom in Segments 4 and 5. Nitrate nitrogen levels in the Potomac and Susquehanna peaked at 2,000-2,500 ppb during Winter of 1987.

Silica depletion occurred during Spring in Segment 5 (Appendix F-6). Station CB5.2 time series (Figure 18) indicate that spring diatom populations in this region were regulated by phosphorus and silica. Stoichiometric ratios of silica to ortho phosphorus during the spring chlorophyll-a peaks approached 4/1 (Si/P), well the below typical 20/1 requirement for diatom cells (Bowie et al., 1985). Silica may be more important than phosphorus in regulating maximum spring biomass in this region. Algal transitions to forms with lower or no silica requirements may have occurred later in the season, but apparently not at sufficient rates to avoid the sudden drops in chlorophyll-a following depletion of dissolved silica. Following the spring diatom bloom, nitrogen

-53-

limitation (inorganic N/P < 10) developed at Station CB5.2 later in Summer, as is typical of most of the Bay (USEPA, 1987).

Stations along the western edge of Segment 4 (41W, 42W, 43W) exhibit a high degree of variability in chlorophyll-a, phosphorus, and other nutrient measurements during Summer. As shown in Figures 16 and 17, summer-average values at these stations often deviated considerably from averages at corresponding central (41C, 42C, 43C) and eastern (41E, 42E, 43E) stations. The Bay is relatively shallow along the western edge of Segment 4 (10-11 meters, as compared with 28-30 meters at central and 11-26 meters at eastern stations, based upon maximum total depths reported in the EPA data base). This area appears to be relatively susceptible to summer blooms driven by transport of soluble nutrients (phosphorus, ammonia) from bottom waters.

Blooms exceeding 100 ppb Chl-a were detected at Station 4.1W during July of 1986 and at Station 4.3W during August of 1984 and 1985 (Figure 18). The rapid increases in chlorophyll-a which occurred at these times were accompanied by rapid increases in ortho phosphorus concentration, apparently derived from bottom waters. As the blooms developed, inorganic nitrogen levels dropped sharply and inorganic N/P ratios were well below 10 (indicative of nitrogen limitation) at peak biomass. As shown in Figure 19, summer inorganic N/P ratios averaged below 10 at most stations in and below Segment 3, except during 1984, when summer inflows (and nitrogen loadings) from the Susquehanna River were relatively high and Bay vertical stratification was relatively strong (Officer et al., 1984).

Figure 20 presents a non-parametric summary of chlorophyll-a data as a function of year, segment, and season. Frequencies of measurements exceeding 15 and 30 ppb are displayed for each category. The 15 ppb value corresponds to the management goal which has been established for restoration/protection of submerged aquatic vegetation (USEPA,1987). The 30 ppb level has been suggested as a "severe nuisance" criterion in freshwater systems, based upon correlations between chlorophyll-a measurements and subjective evaluations of aesthetic qualities and

Figure 19 Inorganic N/P Ratios - Bay Stations - 1984-1987

4

14 CHL-A > 15 1.0 SPRING 0.9 CHLOROPHYLL-A NUISANCE FREQUENCY 0.8 0.7 NUMBER OF SAMPLES 0.6 27 58 0.5 CHL-A > 30 12 29 0.4 55 6 12 16 0.3 30 11 0.2 6 6 58 0.1 17 0.0 85 86 87 85 86 87 85 86 87 85 86 87 85 86 87 . 1.0 SUMMER 0.9 CHLOROPHYLL-A NUISANCE FREQUENCY 0.8 10 0.7 0.6 0.5 25 0.4 30 26 10 0.3 53 5 11 0.2 48 15 58 19 10 0.1 16 17 6 2 0.0 84 85 86 87 84 85 86 87 84 85 86 87 84 85 86 87 84 85 86 87 SEGMENT 5 SEGMENT 2 SEGMENT 3 SEGMENT 4 SEGMENT 1 POTOMAC SUSQUEHANNA

Figure 20 Chlorophyll-a Nuisance Frequencies - Bay Stations - 1984-1987

recreation potential (Walmsley,1984; Heiskary and Walker, 1988). Overall, the frequencies of chlorophyll-a concentrations exceeding the 15 ppb management goal were 19.8% in 1984-1985 and 21.6% in 1986-1987. Frequencies of chlorophyll-a exceeding 30 ppb were 3.8% in 1984-1985 and 1986-1987. These summaries further suggest that 4.3% in no "improvement" in Bay conditions occurred over this period with respect to algal productivity or compliance with management goals, despite reductions in phosphorus loadings attributed to the detergent ban, improved wastewater treatment, and other factors (Table 6).

PRODUCTIVITY CALCULATIONS

Table 11 describes a model which is used below to evaluate factors controlling algal productivity in the Bay as a function for various seasons, years and locations. The model is based upon kinetic theories of algal growth and employs functions and parameter values which are typically used in phytoplankton simulation models (Bowie et al., 1985). Through a series of steps, the model calculates the gross primary production (gross photosynthesis) per unit area (expressed on a relative chlorophyll-a, scale). based upon measurements of transparency, temperature, and soluble inorganic nutrient levels (phosphorus, equations account for effects nitrogen, and silica). The of temperature, light, and nutrient limitation on algal growth rate. The to simulate transport or mass-balance model does not attempt relationships, but is intended primarily for estimating relative productivity and its sensitivity to soluble nutrient concentration, based upon mixed layer measurements at a particular location and date. Areal productivity is important because it is related to the areal loading of organic material to Bay bottom sediments and subsequent development of anaerobic conditions below the halocline (Officer et al., 1984).

As documented in Table 11, an estimate of mixed-layer depth is required to calculate the light limitation factor and areal productivity. While this could be derived directly from vertical temperature and salinity profiles at each station and date, a constant

-57-

Table 11Relative Productivity Model

Symbol Definitions:

Symbol	Description Un	nits	Code						
G =	relative algal productivity per unit area		C						
F ₁ =	light limitation factor	-	С						
F. =	nutrient limitation factor	-	С						
$F_n =$	nitrogen limitation factor	-	С						
$F_{n}^{n} =$	phosphorus limitation factor	-	С						
$F_{e}^{P} =$	silica limitation factor	-	С						
F+ =	temperature factor	-	С						
$Y_n =$	productivity sensitivity to nitrogen	-	С						
Y =	productivity sensitivity to phosphorus	-	С						
Y =	productivity sensitivity to silicon	-	С						
B =	chlorophyll-a	ppb	М						
Z, =	Secchi depth	meters	М						
E =	visible light extinction coefficient	1/meters	C						
Z _m =	mean depth of mixed layer	meters	5						
Z=	optical depth	-	С						
$C_n =$	inorganic nitrogen concentration	ррЪ	M						
C _n =	ortho phosphorus concentrations	ppb	M						
C =	dissolved silicon concentration	ррЪ	М						
K =	half-saturation constant for silica uptake	ppb	50 a						
K_n =	= half-sat. constant for nitrogen uptake	ррЪ	25 a						
Kn =	= half-sat. constant for phosphorus uptake	ppb	2.5 a						
K1 =	half-sat. constant for light intensity	cal/cm ² -hr	1.5 a						
I =	visible solar radiation	cal/cm ² -day	S						
D =	= day length	hours	S						
т =	= water temperature	deg-C	М						
Codes: M = measured, C = calculated , S = seasonal factor (see below) Other = assumed model parameter (a = Bowie et al., 1985)									

Average Monthly Values for 40 degrees latitude (McGaughey, 1968):

Month =	1	2	3	4	5	6	7	8	9	10	11	12
D =	9.7	10.7	11.9	13.3	14.4	15.0	14.8	13.8	12.5	11.2	10.0	9.4
I ₀ =	55	90	135	150	224	236	230	203	158	112	69	45

(continued)
Table 11 (ct.) Relative Productivity Model (ct.)

MODEL EQUATIONS:

Relative Primary Productivity per Unit Area:

 $G = F_1 F_x F_t B Z_m$

Light Limitation Factor:

$$E = 1.66 / Z_{s} , \qquad Z_{o} = E Z_{m} -Z_{o}$$

F₁ = D ln [(K₁ + I_o/D) / (K₁ + I_o e /D)] / (24 Z_o)

Nutrient Limitation Factors:

$$F_{n} = C_{n} / (C_{n} + K_{n})$$

$$F_{p} = C_{p} / (C_{p} + K_{p})$$

$$F_{s} = C_{s} / (C_{s} + K_{s})$$

$$F_{x} = Minimum [F_{n}, F_{p}, F_{s}]$$

Temperature Factor:

 $F_{+} = 1.047 (T - 20)$

Productivity Sensitivity Factors:

Normalized First Partial Derivatives of Areal Productivity with Respect to Soluble Inorganic Nutrient Concentrations

 $\begin{array}{l} \begin{array}{l} {}^{d} {}^{G} \\ {}^{Y_{x}} = {}^{K_{j}} {}^{----} \\ {}^{d} {}^{C_{j}} \end{array}, \quad \text{where } j = n, \ p \ or \ s \end{array}$ $\begin{array}{l} {}^{If} {}^{(F_{n} = F_{x}) \ then: \ Y_{n} = (1 - F_{n})^{2} \ G \ / \ F_{n}} \\ {}^{If} {}^{(F_{p} = F_{x}) \ then: \ Y_{p} = (1 - F_{p})^{2} \ G \ / \ F_{p}} \\ {}^{If} {}^{(F_{p} = F_{x}) \ then: \ Y_{p} = (1 - F_{p})^{2} \ G \ / \ F_{p}} \\ {}^{If} {}^{(F_{s} = F_{x}) \ then: \ Y_{s} = (1 - F_{s})^{2} \ G \ / \ F_{s}} \\ {}^{If} {}^{(F_{s} = F_{x}) \ then: \ Y_{s} = (1 - F_{s})^{2} \ G \ / \ F_{s}} \\ {}^{If} {}^{(F_{s} = F_{x}) \ then: \ Y_{s} = (1 - F_{s})^{2} \ G \ / \ F_{s}} \\ {}^{If} {}^{(F_{s} = F_{s}) \ then: \ Y_{s} = (1 - F_{s})^{2} \ G \ / \ F_{s}} \\ {}^{If} {}^{(F_{s} = F_{s}) \ then: \ Y_{s} = (1 - F_{s})^{2} \ G \ / \ F_{s}} \\ {}^{If} {}^{(F_{s} = F_{s}) \ then: \ Y_{s} = 0 \end{array}$

Limiting Nutrient Frequencies:

If ($F_x > .67$), Limiting Nutrient = None (Soluble nutrient concentrations all exceed twice their respective half-saturation constants and productivity is relatively insensitive to nutrients.)

Else If (F_x = F_p), Limiting Nutrient = Phosphorus Else If (F_x = F_n), Limiting Nutrient = Nitrogen Else If (F_x = F_s), Limiting Nutrient = Silica

mixed layer depth of 5 meters is assumed for the purposes of the calculations described below. Because of the optical characteristics of the Bay (relatively low transparency and high optical depths), calculations are very insensitive to the assumed mixed layer depth. Mixed-layer depth appears in the equations for productivity and optical depth. Except for the exponential term appearing in the expression for the light limitation factor, the depth terms eventually cancel out because they appear in the numerator of the productivity expression and in the denominator of the light limitation factor. The exponential term is close to zero for reasonable ranges of transparency and mixed depth and, as a result, the numerator of the light limitation factor is insensitive to the assumed depth.

The model accounts for algal growth limitation by phosphorus, nitrogen, and silicon. Calculations are dependent upon assumed halfsaturation constants (2.5, 25, and 50 ppb, respectively), which have been selected from a compilation by Bowie et al. (1985). The constants for phosphorus and nitrogen are higher than those employed in the Bay model (1.5 and 15 ppb, respectively (USEPA, 1987)). The ratios are so that conclusions regarding the relative identical, however, importance of nitrogen and phosphorus limitation are not influenced by differences in the coefficients. Silica limitation (not considered in the current Bay model), is important only for diatoms and would not influence growth rates of other algal types. Because uptake by diatoms is the primary mechanism for silica depletion (Wetzel,1975), silica levels reach growth-limiting levels only during periods which are conducive to diatom growth (generally Spring or Fall). As a result, the silica limitation term only becomes important when diatoms dominate and is not important during Summer when other algal types (greens, bluegreens, flagellates) dominate.

The model has been applied to estimate relative productivity and its sensitivity to soluble nutrient concentrations at Bay stations between March 1985 and July 1987. The July 1984-February 1985 data have been excluded because the detection limit for ortho phosphorus during the period (7 ppb) was higher than the half-saturation constant (2.5

-60-

ppb); this prevents evaluation of limiting nutrient during this period. The ortho phosphorus detection limit after February 1985 was 1.6 ppb.

Productivity calculations have been applied to each sample after February 1985 with a complete measurement set. Results have been averaged by month and segment (Appendix G) and by season and segment (Appendix H). Monthly time series are displayed in Figure 21 (productivity), Figure 22 (nutrient limitation factors) and Figure 23 (limiting nutrient frequencies).

Highest productivities (exceeding 3 relative units) are calculated for July 1986 in Segments 3, 4 and 5, May-June 1987 in Segment 5, and July 1987 in Segment 3. Consistent with contrasts of chlorophyll-a measurements, there is no indication that the decreases in phosphorus concentrations observed at several Bay stations (Tables 9 and 10) resulted in decreased algal productivity. Figure 21 suggests increasing productivity in Segment 5. This may be related to the higher winter and spring inflows experienced during 1987, which would cause increased loading and transport of nutrients (nitrogen, phosphorus, silica) to lower regions of the Bay.

Sensitivity coefficients (first partial derivatives of areal productivity with respect to soluble nutrient concentrations) are displayed by segment and season in Figure 24. Highest sensitivity to phosphorus is observed in Segment 1 during Summer (Quarter 3) and in Segments 3 to 5 during Spring (Quarter 2). Sensitivity is to nitrogen is highest during Summer in Segments 3 to 5. The importance of nitrogen limitation during Summer is also reflected by the low inorganic nitrogen to ortho phosphorus ratios (Figure 19).

Sensitivity to silica is highest during Spring in Segments 4 and 5. Silica depletion has been described as an important symptom of eutrophication in natural lakes (Wetzel, 1975; Stauffer, 1985). Spring diatom blooms can rapidly strip soluble nutrients from the water column. Because of the relatively high density of diatom cells and low density stratification in the water column during spring, nutrients are

Figure 221 Relative Productivity by Month and Segment

Figure 22 Growth Limitation Factors by Month and Segment

-63-

Figure 23 Limiting Nutrient Frequencies by Month and Segment

Figure 24 Productivity Sensitivity to Available Nutrient Levels

YEAR & QUARTER

-65-

.1

efficiently removed and deposited to bottom sediments. In the case of Chesapeake Bay, some of these deposited nutrients are transported upstream in the bottom saline layer and subsequently entrained into the surface layer later in the season, at which time they may stimulate additional algal blooms. When spring diatom populations are limited by silica (instead of by phosphorus or nitrogen), more soluble phosphorus and nitrogen is left behind in the surface layer to stimulate other types of algal growth later in the Summer.

Spring silica limitation in Segments 4 and 5 could be considered a symptom of excessive phosphorus and nitrogen levels during this period. Although the system is closer to being limited by phosphorus than by nitrogen under existing conditions, this partially reflects the fact that nitrogen loadings to the Bay (primarily nonpoint) have continued to increase, while phosphorus controls have been widely implemented. Critical questions in this regard are (1) What is the limiting nutrient under "natural" conditions in this region of the Bay during Spring?, and (2) What is the relative feasibility of achieving nitrogen vs. phosphorus limitation and resulting reductions in peak spring biomass in this region through additional point and/or nonpoint controls? The same questions apply to summer conditions.

In all segments, nutrient sensitivities are low during fall and winter quarters because of low temperatures and light limitation. Light limitation is especially important in Segment 2. Based upon the relative magnitudes of the chlorophyll-a and transparency measurements, low transparencies in this segment (< 1 meter) primarily reflect inorganic turbidity from the Susquehanna River and/or upwelling of particulates from the saline bottom layer. The low productivities and low nutrient sensitivities calculated for Segment 2 are consistent with the relatively low primary production rates measured by the MDOEP(1987) in this region.

-66-

DISSOLVED OXYGEN DEPLETION

Depletion of dissolved oxygen from bottom waters of the Bay, as driven by decay of settling organic material, historical organic deposits, and hydrodynamic factors, has important water quality and ecological consequences (Officer et al.(1984); Seliger et al.,1985). This process promotes release of soluble nutrients from the bottom sediments (further aggravating the eutrophication problem) and limits habitat for shellfish, finfish, and other aquatic life.

Figure 25 displays average dissolved oxygen at 20 meters depth between 1984 and 1987 for each of 9 Bay stations. These values have been derived by averaging measurements between 17 and 23 meters for each date and station. This procedure avoids complex spatial weighting procedures required for consideration of average conditions below the pycnocline. Depletion rates at 20 meters have been employed in previous discussions of historical data (Officer et al., 1984).

Figure 25 shows that anaerobic conditions developed at each station during May or June of each year. Dates at which dissolved oxygen levels dropped below 2 ppm are summarized by station and year in Table 12, along with depletion rates (ppm/day). Spring depletion rates ranged from .1 -.2 ppm/day, and are comparable to the range of .1-.14 ppm/day derived from displays of historical data reported by Officer et al.(1984) and USEPA(1987).

Variations in hydrodynamic factors (e.g., development of density stratification related to spring inflows, Officer et al., 1984) and algal productivity contribute to spatial and temporal variations in oxygen depletion rate. In Segment 3, rates were somewhat higher and dates of anoxia were earlier in 1985, as compared with 1986 and 1987. The reverse appears to be true further downstream in Segment 5 and at the mouth of the Potomac (Station LE2.3).

Officer et al. (1984) state: "Effects of the spring diatom bloom in the lower Chesapeake Bay have to be considered in terms of the

-67-

DISSOLVED OXYGEN AT 20 METERS (PPM)

Figure 25 Dissolved Oxygen Depletion at 20 Meters - Bay Stations

.

Table 12 Spring Oxygen Depletion at Bay Mainstem Stations

		YEAR				
STATION	1985	1986	1987			
ONSET OF	ANOXIA -	JULIAN DAY	7 (a)			
CB3.1	110	125	125			
CB3.3	110	130	130			
CB4.1	120	140	130			
CB4.2	135	150	135			
CB4.3	135	160	135			
CB4.4	150	160	135			
CB5.1	160	160	140			
CB5.2	165	165	140			
CB5.3	195	195	150			
LE2.3	170	140	140			
ONSET OF	ANOXIA -	DATE (a)				
CB3.1	20-Apr	05-May	04-May			
CB3.3	20-Apr	10-May	09-May			
CB4.1	30-Apr	20-May	09-May			
CB4.2	15-May	30-May	14-May			
CB4.3	15-May	09-Jun	14-May			
CB4.4	30-May	09-Jun	14-May			
CB5.1	09-Jun	09-Jun	19-May			
CB5.2	14-Jun	14-Jun	19-May			
CB5.3	14-Jul	14-Jul	29-May			
LE2.3	19-Jun	20-May	19-May			
AVERAGE	DEPLETION	RATE (PPM/	/DAY) (b)			
CB3.1	0.20	0.16	0.16			
CB3.3	0.21	0.16	0.16			
CB4.1	0.20	0.14	0.15			
CB4.2	0.15	0.12	0.15			
CB4.3	0.15	0.12	0.15			
CB4.4	0.12	0.11	0.15			
CB5.1	0.11	0.11	0.15			
CB5.2	0.10	0.10	0.16			
CB5.3	0.10	0.09	0.14			
LE2.3	0.10	0.15	0.15			

- a Anoxia Defined as D.O. < 2 ppm; Depths Fixed at 20 meters Dates of Anoxia Estimated by Interpolation between Sampling Dates; Estimates Accurate to within Approximately One Week
- Mean Slope of Depletion Rate Curve from Early Spring (Approx. April 10) until D.O. Drops below 2 ppm

contribution to the expanded hypoxic conditions and the loading of organic detritus through gravitational circulation to the mid-bay region". This concept is supported by 1985-1987 data. The early development of anoxic conditions in Segment 5 is correlated with the major diatom bloom which occurred in this region during Spring of 1987 and with the high productivity rates calculated for this location and time period (Figure 21). Dissolved oxygen variations with depth at Station CB5.2 and corresponding surface chlorophyll-a concentrations are displayed in Figure 26. Anoxia developed at this location approximately one month earlier in 1987, as compared with 1985 and 1986.

is unlikely that hydrodynamic factors can explain the It development of anoxia early in 1987. Vertical differences (20 meters vs. surface) in salinity, temperature, dissolved oxygen) and surface chlorophyll-a at Station CB5.2 are shown in Figure 27. Vertical salinity differences and contours (Figure 28) were similar in 1985-1987, as distinct from 1984, when high spring and summer inflows established strong gradients (Seliger et al., 1985). As shown in Figure 27, the temperature difference peaked at 8 deg C in early June 1987, about two weeks after the maximum oxygen difference. While stronger temperature gradients would also contribute to development of bottom anoxia, density stratification is controlled primarily by variations in salinity in these measurement ranges. For example, a salinity difference of 7 ppt would correspond to a density difference of about .006 g/cm³, whereas a temperature difference of 8 deg-C (maximum observed) would correspond to a density difference of about .002 g/cm^3 . The development of a strong temperature gradient in 1987 may have been a secondary effect of the coincident algal bloom, which would have increased the absorption of light and heat in the surface layer. Thus, the algal bloom may have contributed to the early development of anoxia by supplying abundant quantities of settling organic materials and enhancing vertical density stratification.

Seliger et al. (1985) described the development of northern bay anoxia in 1984 as "catastrophic". They noted that dissolved oxygen concentrations below the pycnocline decreased to zero during June, two

-70-

-72-

Figure 28 Salinity Contours at Bay Station CB5.2

đ

Figure 26 Chlorophyll-a and Oxygen Depletion at Bay Station CB5.2

months earlier than for previous wet years. Based upon the dates of oxygen depletion and maximum vertical extent of anoxia (approaching 6 meters at Station CB5.2, Figure 26), conditions during 1985 and 1986 were at least as "catastrophic" as those observed in 1984, if not more so, despite lower flow regimes and less density stratification.

As noted by Seliger et al.(1985), most of the remaining viable shellfish beds in Maryland are located in Eastern Bay and the Choptank and Potomac Rivers, including the St. Mary's River, a tributary near the mouth of the Potomac. These areas with high resource value include regions impacted by the Spring 1987 diatom bloom and subsequent early anoxia.

CONSEQUENCES OF SHIFTS IN LIMITING NUTRIENT

Soluble nutrient data, productivity calculations, and formal modeling efforts (USEPA,1987) indicate that algal growth in Chesapeake Bay is not controlled exclusively by phosphorus. As summarized in Figure 29, phosphorus is the primary limiting nutrient in and above Segment 2 during all seasons and in Segment 3 during Spring. Nitrogen limits peak biomass levels in and below Segment 3 during Summer. Spring silica limitation is important in Segments 4 and 5. The importance of factors other than phosphorus has implications for evaluating the benefits of the detergent ban and other phosphorus control strategies intended to address the Bay's eutrophication problems.

When a phosphorus-limited system is coupled (in time or space) with a nitrogen-limited system, one effect of controlling phosphorus sources alone is to displace productivity from the P-limited to the N-limited system. This occurs because reducing productivity in the P-limited system reduces uptake and trapping of nitrogen and thereby increases transport of nitrogen downstream. This concept also applies when the downstream system is limited by silica, or when any spatial or temporal shift in limiting nutrient occurs.

Figure 29 Limiting Nutrient Frequencies by Segment and Season

+·..

-75~

Systems "A" This conceptual model is illustrated in Figure 30. (phosphorus-limited) and "B" (nitrogen-limited) are coupled in space and/or time ("B" receives "left-overs" from "A"). Productivity and nutrient trapping in each system (represented by downward arrows) are assumed to be controlled by either nitrogen or phosphorus. Productivity removes nitrogen and phosphorus from each system at a fixed N/P ratio of 10, until the supply of one of the nutrients is exhausted. The remaining nutrients are transported to the downstream segment. System "A" is fed by external phosphorus and nitrogen fluxes, which are manipulated under Scenarios 1 (No Control), 2 (Phosphorus Control), and 3 (Phosphorus and Nitrogen Control). System "B" is fed by outflow from System "A" and by an "Infinite P Source". The latter could reflect, for example, bottom sediment releases and exchange with ocean waters. The magnitude of the infinite P source and its nitrogen content are irrelevant for the purposes of these calculations, as long it is sufficient to maintain "B" in a nitrogen-limited state (typical of marine waters).

Without loading controls (Scenario 1), productivities of 40 and 10 (arbitrary units) are calculated for Systems "A" and "B", respectively. The effect of phosphorus control (Scenario 2, reducing external phosphorus loading from 40 to 20), is to decrease the productivity in Segment "A" from 40 to 20 and to increase the productivity in Segment "B" from 10 to 30. Depending upon flow balances, surface areas, etc., phosphorus controls alone could decrease the maximum productivity. Total productivity (A+B), a relative indicator of organic loading and resulting oxygen depletion, is unchanged, however. Scenario 3 shows that reductions in both phosphorus and nitrogen are required to reduce the total productivity of both systems.

In the Bay, Systems "A" and "B" are also coupled because of tidal influences and salinity intrusion, which cause transport of a portion of the nutrients trapped in System "B" back upstream to System "A". If the conceptual model were modified to account for this relationship, the benefits of phosphorus control alone would be further diminished. Reductions in external phosphorus loadings to System "A" would be

-76-

Figure 30. Conceptual Model of Coupled Phosphorus-Limited and Nitrogen-Limited Systems

PROTOTYPES: UPPER BAY - SPRING LOWER BAY - SPRING UPPER BAY - SPRING UPPER BAY - SUMMER partially offset by increased nutrient deposition in System "B" and subsequent upstream transport in saline bottom waters.

This conceptual model can be considered in relation to Bay monitoring data for the 1984-1987 period. As shown in Figure 29, phosphorus is the primary limiting nutrient in Bay Segment 3 during Moving downstream during this season, however, silica and Spring. nitrogen become increasingly important. Similarly, moving from Spring to Summer within Segment 3, nitrogen becomes the controlling factor. Figure 20 indicates that spring algal bloom frequencies decreased in Segment 3 between 1985 and 1987. Corresponding increases in bloom frequencies were observed in Segments 4 and 5 during Spring and in Segment 3 during Summer. Formal modeling would provide more detailed insights and help to sort out effects of changes in flow, mixing, etc.. The algal response pattern is not inconsistent with expectations based upon the observed patterns in limiting nutrients.

Model simulations (USEPA(1987), p.8) of alternative management strategies show that control of phosphorus alone results in the transport of additional nitrogen to the lower Bay and subsequent stimulation of algal growth to levels which equal calibration levels. The predicted response of average chlorophyll-a concentration to additional phosphorus loading controls is sluggish; a 40% reduction of phosphorus loading below 1985 levels would result in a 10% reduction in chlorophyll-a for 1984 circulation (USEPA, 1987). Model results also indicate that control of phosphorus alone moves the zone of phosphorus limitation further downstream. The extent to which the existing Bay model reflects the impacts of shifts in limiting nutrient as a function of season and location is unclear, however, because the model is steadystate, silica limitation is not considered, and there is considerable uncertainty with respect to the simulation of sediment nutrient fluxes, which have important influences on summer conditions in the Bay.

Although phosphorus controls implemented since the 1970's have apparently resulted in reductions in mean and maximum chlorophyll-a concentrations in the Upper Bay (USEPA, 1987), there is no evidence that rates of oxygen depletion or seasonal volumes of anoxic water have decreased. Based upon spatial and seasonal patterns in limiting nutrient, nitrogen controls will have to be implemented in order to achieve significant reductions in the overall productivity of the Bay and resulting oxygen depletion.

Historical data from Bay Segment 1 (mouth of Susquehanna River) indicate that phosphorus concentrations in recent years and are well below levels forecast based upon USEPA(1983) regression analysis of pre-1981 data (Figure 31). In contrast, nitrate nitrogen levels have continued to increase since the early 1960's. As indicated in Table 7, nonpoint loadings and the Susquehanna River account for an estimated 86% of the total nitrogen loading to the Maryland portion of the Bay. Unit export of nitrogen from the Susquehanna River (5180 lbs/mi²-yr) is 78% higher than that observed in the Choptank River (2914 lbs/mi²-yr).

The importance of both nitrogen and phosphorus in controlling Bay productivity is reflected in the Draft Bay Agreement, which calls for a 40% reduction in both N and P loadings below 1985 levels (USEPA, 1987). Using 30,845 lbs/day as a reference total phosphorus loading (Table 7), the detergent ban under 1986 effluent limits would account for a reduction of 5.4% (1681 1bs/day = 112 mgd @ 1.8 ppm). Under 1987 effluent limits, load reductions attributed to the ban are reduced to 3.4% (1066 lbs/day = 71 mgd @ 1.8 ppm). In order to achieve the desired 40% reduction in phosphorus loadings, it seems likely that phosphorus effluent limits would have to be established at additional plants. Sellars(1985) estimated that the total effluent volume from minor plants in Maryland (<1 mgd) was 25 mgd. Taking this as an estimate of the "ultimate" volume of wastewater not subject to phosphorus effluent limits, the ultimate load reductions attributed to the ban could amount to 1.2% (375 lbs/day = 25 mgd @ 1.8 ppm). Consideration of phosphorus attenuation in stream segments (ignored in these calculations) would further reduce this impact.

Because of the importance of other growth-limiting factors, changes in algal productivity resulting from the ban would be less than the

Figure 31 Historical Phosphorus and Nitrate Levels - Bay Segment 1

-80-

.

percentage changes in phosphorus loading. Taking the chlorophyll/phosphorus response predicted by the existing Bay model (10%/40%) as an approximate estimate of sensitivity, reductions in algal productivity attributed to the ban would range from 0.3 to 0.8% for effluent volumes in the range of 25 to 71 mgd without phosphorus limits.

- (1) At river monitoring stations with high upstream effluent densities (Patuxent, Monocacy, Antietam Rivers), mass-balance observed reductions that in stream calculations show phosphorus loadings under low-flow conditions following the phosphate detergent ban were consistent with the average observed reduction in effluent phosphorus concentrations at Maryland treatment plants without phosphorus effluent limits (95% confidence range for reduction in mean sewage effluent concentration = 1.4 - 2.2 ppm). This suggests that under low flow conditions of (less than mean annual flow), reductions in point-source phosphorus lead to equivalent reductions in stream phosphorus loads in these rivers. Limited sampling frequency and high variability preclude direct assessment of point-source effects under high-flow Estimates of annual or seasonal loading changes conditions. attributed to the ban assume that mass-balance relationships observed under low flows hold over the entire range of flows.
- (2) Detailed evaluation of biological responses at river monitoring stations to phosphorus reductions is infeasible Soluble reactive phosphorus with the existing data base. concentrations at river stations generally exceed algal factors growth-limiting levels and physical (velocity, residence time, temperature) are more important than nutrient concentrations in regulating algal productivity. For this reason, algal growth is less of a problem and less sensitive to nutrient levels in river segments, as compared with downstream estuary and Bay segments, which provide a more This is illustrated by suitable habitat for algal growth. data from a Patuxent River station (PXT0603) which was monitored more intensively for nutrient and biological parameters than the other river stations studied. As a combined result of variations in flow and the phosphate detergent ban, summer-mean total phosphorus concentrations

decreased from 875 ppb in 1985 to 413 ppb in 1986, while chlorophyll-a concentrations remained at very low levels (3.3 ppb in 1985 and 3.6 ppb in 1986).

- Based upon quarterly mass-balances for the Maryland portion of (3) Chesapeake Bay, the ban could account for phosphorus loading reductions in the range of 2.4 to 11.1% for the January 1986 to September 1987 period, assuming no attenuation of pointsource loadings above the Fall Line and ignoring atmospheric and bottom sediment sources of phosphorus. 'These reductions are attributable to the 112 mgd sewage effluent volume without phosphorus limits during this period. Percentage reductions corresponding to the 71 mgd effluent volume without phosphorus removal after 1987 range from 1.8 to 7.1%. These figures are based upon mass balances developed over a period of relatively runoff for all major Bay tributaries; percentage low reductions attributed to the ban would be lower for periods of average or above-average runoff.
- (4) Mass-balance calculations also indicate that as a combined result of variations in flow, non-point loadings, wastewater treatment plant upgrades, and the phosphate detergent ban, phosphorus loadings to the Maryland portion of the Bay were 11% lower in Spring 1986, as compared with Spring 1985. Summer loadings were lower by 25%.
- (5) Consistent with variations in loading, statistically significant (p<.10) decreases in seasonal mean phosphorus (total, ortho, dissolved) concentrations were measured at several Bay and estuary stations between 1985 (pre-ban) and 1986 (post-ban). Spring total phosphorus concentrations were significantly lower at 10 stations out of 37 with sufficient data; summer concentrations were lower at 7 stations out of 40.

-83-

- (6) In comparing 1985 vs. 1986 spring and summer conditions at Bay and estuary stations, significant reductions in phosphorus concentration were observed simultaneously with significant reductions in algal density (chlorophyll-a) in 1 comparison Further investigation of data from this station out of 77. (Choptank River) indicated that the apparent reductions in phosphorus and chlorophyll-a could be attributed to variations The lack of detectable biological response to in streamflow. reductions in phosphorus at several locations is consistent with the spatial and seasonal distributions of limiting nutrients (nitrogen, phosphorus, silica), with statistical difficulties associated with detecting small changes in algal densities, and with results of model simulations conducted to evaluate the sensitivity of algal primary production to changes in soluble nutrient concentrations as a function of time and location in the Bay.
- (7) A major algal bloom occurred in Bay Segment 5 (mouth of Patuxent to Virginia state line) during Spring 1987. This bloom was sustained for a period of approximately 2 months. Peak algal biomass (chlorophyll-a > 40 ppb) was limited by silica in Spring and by nitrogen later in Summer. In conjunction with this bloom, depletion of dissolved oxygen from bottom waters occurred approximately one month earlier than observed in 1985 and 1986.
- (8) Blooms also occurred in the Bay between Annapolis and the mouth of the Patuxent River during Summers of 1984, 1985, 1986 and 1987. They were generally accompanied by rapid increases in ortho phosphorus and ammonia concentrations, apparently caused by upwelling of nutrient-rich bottom waters, but peak biomass levels were controlled by nitrogen.

- (9) Data evaluated in this study suggest that no improvement in Bay conditions occurred over the 1984-1987 time period with respect to algal productivity or compliance with management goals, despite reductions in phosphorus loadings attributed to the phosphate detergent ban, improved wastewater treatment, and other factors. The frequencies of observed chlorophyll-a values exceeding the 15 ppb management goal were 19.8% in 1984-1985 and 21.6% in 1986-1987. The timing, rate, and maximum vertical extent of oxygen depletion in 1986-1987 were at least as severe as those measured in previous years, if not more so, particularly in southern portions of the Bay.
- (10) Despite significant reductions in phosphorus loadings to the Upper Bay achieved since the 1970's, nitrogen remains the primary limiting nutrient during Summer below Annapolis. Silica limits peak diatom populations during Spring below the Patuxent River. Under these conditions, the productivity of the Bay and resulting depletion of dissolved oxygen from bottom waters are very insensitive to small changes in phosphorus loadings attributed to the detergent ban. Benefits of phosphorus controls are partially offset by displacement of nitrogen, silica, and productivity to lower regions of the Bay, where most of the remaining viable shellfish beds are located.
- (11) Additional focus on nitrogen loadings is required if significant reductions in productivity and oxygen depletion are to be realized. Nutrient balance computations indicate that Maryland point sources account for only 14% of the total nitrogen loading to the Maryland portion of the Bay. This suggests the relative importance of addressing nonpoint nitrogen loadings.

- (12) Nitrogen loadings calculated from point-source inventories and recent intensive monitoring at Fall Line stations indicate that previous studies (USEPA,1983; Fisher et al.,1988) may underestimate total nitrogen loadings to the Bay by as much as 50%. Previous estimates were based upon watershed modeling and do not reflect increasing trends in nonpoint nitrogen loadings, particularly from the Susquehanna River. The significance of acid rain and other nonpoint sources of nitrogen may be considerably greater than stated in a recent report by the Environmental Defense Fund (Fisher et al., 1988).
- (13) The importance of controlling nitrogen, as well as phosphorus, in order to reduce Bay productivity is reflected in the Draft Bay Agreement, which calls for a 40% reduction in both N and P loadings below 1985 levels (USEPA,1987). For a 25-71 mgd range of effluent volumes that may not be subject to phosphorus effluent limits in the future, reductions in phosphorus loading to the Maryland portion of the Bav attributed to the ban would amount to 1.2-3.3% of the 1985 loading. Because of the importance of growth-limiting factors other than phosphorus, corresponding percentage reductions in algal productivity would be lower (perhaps in the range of .3 to .8%, based upon interpolation of USEPA (1987) model results).
- (14) The full range of costs and benefits must be considered in evaluating the phosphate detergent ban and in comparing it with alternative strategies for achieving the same management objectives. Considering the small changes in phosphorus loading resulting from the ban and the importance of limiting nutrients other than phosphorus, it is clear that the ban in itself contributes little to the cause of restoring the Bay.

REFERENCES

Baltimore Department of Public Works, "Reservoir Watershed Management Progress Report", Bureau of Water and Waste Water, Water Engineering Division, Water Quality Management Office, October 1987.

Bodo, B. and Unny, T.B., "Sampling Strategies for Mass-Discharge Estimation", <u>Journal of the Environmental Engineering Division</u>, <u>American</u> <u>Society of Civil Engineers</u>, Vol. 198, No. 4, pp. 812-829, August 1983.

Bodo, B. and Unny, T.B., "Errata: Sampling Strategies for Mass-Discharge Estimatión", Journal of the Environmental Engineering Division, American Society of Civil Engineers, Vol. 199, No. 4, pp. 867-870, August 1984.

Booman, K.A. and R.I. Sedlak, "Phosphate Detergents - A Closer Look", Journal of the Water Pollution Control Federation, Volume 58, No. 12, pp. 1092-1100, December 1986.

Booman, K.A., L. Pallesen, and P.M. Berthouex, "Intervention Analysis to Estimate Phosphorus Loading Shifts", <u>Systems Analysis in Water Quality</u> <u>Management</u>, M.B. Beck, ed., Pergamon Press, pp. 289-296, 1987.

Bowie, G.W., et al., "Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling (Second Editions)", U.S. Environmental Protection Agency, Environmental Research laboratory, Athens, EPA/600/3-85/040, June 1985.

Fisher, D., J. Ceraso, T. Mathew, M. Oppenheimer, "Polluted Coastal Waters: The Role of Acid Rain", Environmental Defense Fund, New York, April 1988.

Harris, R. and W.W. Walker, "Impacts of Maryland Phosphorus Detergent Ban on Eutrophication in Chesapeake Bay", prepared for Soap and Detergent Association, New York, March 1985.

Hartig, J.H. and F.J. Horvath, "A Preliminary Assessment of Michigan's Phosphorus Detergent Ban", <u>Journal of Water Pollution Control</u> <u>Federation</u>, Vol. 54, pp. 193-197, 1982.

Heiskary, S. and W.W. Walker, "Developing Phosphorus Criteria for Minnesota Lakes", <u>Lake and Reservoir Management</u>, Vol. IV, Issue No. 1, North American Lake Management Society, in press, 1988.

Jones, E.R. and S.D. Hubbard, "Maryland's Phosphate Ban - History and Early Results", <u>Journal of the Water Pollution Control Federation</u>, Vol. 58, No. 8, pp. 816-822, August 1986.

Lung, W.S., "Phosphorus Loads to the Chesapeake Bay: A Perspective", <u>Journal of the Water Pollution Control Federation</u>, Vol. 58, No. 7, pp. 749-756, July 1986.

Maryland Office of Environmental Programs, "Monitoring for Management Actions", Chesapeake Bay Water Quality Monitoring Program - First Biennial Report, February 1987.

McGauhey, P.H., <u>Engineering Management of Water Quality</u>, McGraw Hill, New York, 1968.

Montgomery, R.H. and J.C Loftis, "Applicability of the t-Test for Detecting Trends in Water Quality Variables", <u>Water Resources Bulletin</u>, Vol. 23, No. 4, pp. 653-662, August 1987.

Officer, C.B., R.B. Biggs, J.L Taft, L.E. Cronin, M.A. Tyler, W.R. Boynton, "Chesapeake Bay Anoxia: Origin, Development, and Significance", <u>Science</u>, Vol. 223, pp. 22-27, 6 January 1984.

Salas, H.J. and R.V. Thomann, "A Steady-State Phytoplankton Model of Chesapeake Bay", <u>Journal of the Water Pollution Control Federation</u>, pp. 2752-2771, December 1978.

Seliger, H.H., J.A. Boggs, W.H. Biggley, "Catastrophic Anoxia in Chesapeake Bay in 1984", <u>Science</u>, Vol. 228, pp. 70-73, 5 April 1985.

Sellars, R.B., "Tabulations of Sewage Flow in Maryland", Maryland Department of Public Health, 1985.

Sellars, R.B., D.S. Bauer, J.L Rein, Ming-Liang Jiang, "Effect of Phosphate Detergent Ban on Municipal Treatment Plants in Maryland", Water Management Administration, Office of Environmental Program, Division of Municipal Compliance, June 1987.

Snedecor, G.W. and W.G. Cochran, <u>Statistical Methods</u>, Iowa State University Press, Ames, Sixth Edition, 1972.

Stauffer, R.E., "Nutrient Internal Cycling and the Trophic Regulation of Green Lake, Wisconsin", <u>Limnology and Oceanography</u>, Vol. 20, No. 2, pp. 347-363, 1985.

U.S. Environmental Protection Agency, "Chesapeake Bay: A Framework for Action", Region 3, September 1983.

U.S. Environmental Protection Agency, "Summary of Chesapeake Bay Water Quality Issues, Model Results and Benefits of the Drate 1987 Chesapeake Bay Agreement on Nutrients", Water Management Division, EPA Region III, October 1987.

U.S. Geological Survey, "Water Resources Investigations in Maryland and the District of Columbia, 1986", prepared in cooperation with the Maryland Geological Survey, 1976.

Walker, W.W., "Empirical Methods for Predicting Eutrophication in Impoundments, Report 4: Applications Manual", prepared for Chief of Engineers, U.S. Army, Technical Report E-81-9, Environmental Laboratory, USAE Waterways Experiment Station, Vicksburg, Mississippi, July 1987a. Walker, W.W., "Changes in Effluent Phosphorus Concentrations Following Implementation of the Maryland Phosphate Detergent Ban", prepared for Soap and Detergent Association, New York, September 1987b.

Walker, W.W., "Enhancements to Software for Analysis and Prediction of Eutrophication Potential in Reservoirs", prepared for Environmental Laboratory, USAE Waterways Experiment Station, P.O. Box 631, Vicksburg, Mississippi, Draft, March 1988.

Walmsley, R.D., "A Chlorophyll-a Trophic Status Classification System for South African Impoundments", <u>Journal of Environmental Quality</u>, Vol. 13, pp. 97-104, 1984.

Wetzel, R.G., Limnology, W.B. Saunders Co., Philadelphia, 1975.

EUTROPHICATION IN CHESAPEAKE BAY BEFORE AND AFTER IMPLEMENTATION OF MARYLAND'S PHOSPHATE DETERGENT BAN

.

APPENDICES

A	Monthly Runoff at Fall Line Gauging Stations
B	Diagnostic Plots of River Phosphorus Concentrations
C	Bay and Estuary Stations - Means by Station and Season
D	Mean Concentrations by Segment and Month - Bay Stations
E	Mean Concentrations by Segment and Season - Bay Stations
F	Time Series Plots - Monthly Means by Bay Segment 1 Chlorophyll-a 2 Total Phosphorus 3 Ortho Phosphorus 4 Inorganic Nitrogen 5 Total Kjeldahl Nitrogen 6 Dissolved Silicon 7 Salinity 8 Secchi Depth
G	Productivity Factors - Means by Segment and Month

H Productivity Factors - Means by Segment and Season

STATION: MEAN FLOWS (CFS)					RUNOFF (INCHES)						
AREA	(MI2)	SUSQUE.	CHOPTANK	PATUXENT	POTOMAC	TOTAL	SUSQUE.	CHOPTANK	PATUXENT	POTOMAC	TOTAL
	монти										
87	10	6017	/3 1	285 8	6025	12170	0.20	0 44	0.05	n 40	0 36
20	11	22658	1/0 0	426.2	0006	33128	0.27	1 38	1 36	0.96	0.00
83	12	01/51	370 1	1020 8	26645	110505	7 80	3 87	3 41	2.66	3 52
84	1	21011	101 2	/07 0	10661	32070	0.07	1 05	1 35	1 04	0.95
84	2	115762	325 /	407.0	30457	156203	4 61	3 11	2.04	3 68	4 31
84	7	55832	668 5	8/3 1	36620	01573	2 38	4 78	2.04	3.00	2 70
84		130060	400.5	8/3 2	47860	180003	5 30	4.76	2 70	4 62	5 14
84	5	60087	200 4	657 5	10025	90770	2 98	2 04	2 18	1 99	2 67
84	6	53050	141 2	262 1	5433	58886	2 18	1 30	0.84	0.52	1 68
84	7	38672	62.8	371 6	6641	45747	1 65	0.64	1 23	0.66	1 35
84	, 8	28823	30.2	3/1.0	11346	40542	1 23	0.04	1 14	1 13	1 10
8/	0	06/.6	17 5	182.8	3257	13103	0.40	0.51	0 50	0 31	0.37
8/	10	7090	22 3	155 7	3170	113/1	0.70	0.77	0.57	0.31	0.37
8/	11	1518/	22.5	225 5	/086	20/21	0.63	0.25	0.52	0.52	0.55
8/	12	55000	20.4	306 1	11011	67265	2 34	0.25	1 01	1 10	1 08
85	1	20817	51 3	173 7	7216	37258	1 27	0.40	0.58	0.72	1 10
85	2	36580	155 3	536 1	20864	58144	1 41	1 43	1 60	1.88	1.10
85	7	56203	77.0	203.0	13033	60514	2 30	0.75	0.68	1 30	2 05
85	~	52153	45 0	167 4	11477	63862	2 15	0.64	0.56	1 11	1 82
85	5	26479	55 5	238 4	2820	34450	1 04	0.57	0.54	0.97	1 02
85	6	16882	30.5	103 6	7575	24681	0.70	0.30	0.62	0.73	0 70
85	7	10702	16 0	173.0	3710	14570	0.46	0.50	0.62	0.15	0.10
85	, 8	7758	24.5	104 5	2825	10712	0.40	0.15	0.45	0.37	0.32
85	0	10688	05 3	211 4	1755	12550	0.55	n 94	0.55	0.20	0.36
85	10	1/28/	113 6	163 0	3365	17026	0.45	1 16	0.54	0.77	0.50
85	10	53230	50.2	276 1	/2020	95603	2 10	0.58	0.30	4 06	2 73
85	12	53074	107.2	21/ 0	16606	70088	2 30	1 05	0.07	1 67	2 00
86	1	31800	155 0	219.7	5500	37764	1 36	1.05	0.72	0.55	1 11
86	2	51070	200 5	270.4	25/.04	02251	2.54	2.68	1 14	2 30	2 46
86	2 7	101658	107 0	20/ 3	25276	127386	/ 30	2.00	0.07	2.50	3 75
86	4	60010	102 0	328.0	11881	73222	2 51	1 01	1 05	1 15	2 00
86	5	27738	/6 7	153.8	6841	36770	1 18	0.48	0.51	0.68	1 02
86	6	30017	10.7	116 4	2856	33000	1 27	0.40	0.37	0.00	n 97
86	7	18032	17.5	10.4	1885	20031	0.77	0.12	0.34	0.20	0.50
86	Ŕ	10032	15 5	121 5	1452	20621	0.81	0.16	0.24	0.17	0.61
86	0	7850	10.3	65.2	063	8888	0.32	0.10	0.70	0.14	0.25
86	10	16500	11 7	80 4	1034	17716	0.52	0.10	0.27	0.07	0.52
86	10	50720	30 /	2/.8.0	3705	54703	2 10	0.12	0.27	0.10	1 56
86	12	65420	225 0	335 0	12000	77080	2 78	2 30	1 11	1 20	2 30
87	1	20510	338 0	/21 0	11160	61620	1 26	2.50	1 30	1 11	1 22
87	2	27510	25/ 0	285 0	12680	35800	0.87	2 3/	0.85	1 14	0.06
87	7	57630	254.0	366.0	16180	76632	2 /5	2.54	1 21	1 61	2 10
87		01020	170.0	477 n	45580	137176	2.45	1 37	1 57	4 40	3 01
97	ч с	28200	102.0	31/ 0	15300	/.3022	1 20	1 10	1 0/	1 57	1 20
87	ر ۸	16010	70.0	214.0	5397	73766	0 AA	0 70	0 A U	0.52	0 62
87	7	18010	17 0	180.0	//.र/	226/1	0.00	0.59	0.07	0.72	0.02
87	י פ	AK19	۲۲.0 ۲ ۲	0.00.0 88 0	1080	7801	0.77	0.17	0.00	0.44	0.07 0.27
87	9	31420	9.4	131.3	7341	38902	1.29	0.09	0.42	0.71	1.11
	, 										

·__

APPENDIX B

Diagnostic Plots of River Phosphorus Concentrations

STATION LOCATION

LAT LONG HYD.UNIT PAGE

TIME SERIES - JULY 1984 - MARCH 1987.....

ANA0082 ANACOSTIA R. AT BRIDGE ON BLADENSBURG ROAD 38.941 76.943 2070010 B-1 ANTO044 ANTIETAM R. AT GAUGE 39.450 77.732 2070004 8-2 ANT0203 ANTIETAM R. AT BRIDGE ON POFFENBERGER ROAD 39.595 77.711 2070004 B-3 CHO0626 CHOPTANK R. AT RED BRIDGES NEAR SEWELL MILLS 38.997 75.786 2060005 B-4 CON0005 CONOCOCHEAGU C. AT BRIDGE ON MD. ROUTE 68 39.602 77.822 2070004 B-5 GEO0009 GEORGES C. 1 MILE NORTH OF WESTERNPORT 39.494 79.045 2070002 B-6 GUN0125 GUNPOWDER FALLS AT BRIDGE ON CROMWELL BRIDGE ROAD 39.493 76.532 2060003 B-7 GWN0115 GWNNS FALLS AT BRIDGE ON ESSEX ROAD IN VILLA NOVA 39.346 76.736 2060003 B-8 MON0020 MONOCACY R. BRIDGE OM MD. ROUTE 28 39.244 77.441 2070009 B-9 MON0155 MONOCACY R. BRIDGE ON REELS MILL ROAD 39.388 77.413 2070009 B-10 MON0269 MONOCACY R. BRIDGE ON BIGGS FORD ROAD 39.480 77.389 2070009 B-11 MON0528 MONOCACY R. BRIDGE ON MD. ROUTE 7, BRIDGEPORT 39.679 77.235 2070009 B-12 NBP0103 N. BR. POTOMAC W. MOORES HOLLOW RD. AND ROUTE 51 39.583 78.817 2070002 B-13 NPA0165 NORTH BRANCH PATAPSCO RIVER ROUTE 91 39.500 76.883 2060003 B-14 PAT0176 PATAPSCO R. AT WASHINGTON BLVD.(U.S. RT 1) 39.218 76.707 2060003 B-15 POT1184 POTOMAC R. AT GAGE ABOVE LITTLE FALLS DAM 38.933 77.119 2070008 B-16 POT1471 POTOMAC R. AT EASTERN TERMINUS OF WHITES FERRY 39.155 77.519 2070010 B-17 POT1830 POTOMAC R. BELOW BRIDGE ON MD. ROUTE 34 39.436 77.802 2070004 B-18 POT2386 POTOMAC R. BELOW BRIDGE ON US. RT. 522 IN HANCOCK 39.697 78.178 2070004 B-19 PXT0603 PATUXENT R. AT BRIDGE ON U.S. RT. 50 38.955 76.694 2060006 B-20 PXT0972 PATUXENT R. AT BRIDGE ON MD. 97 NEAR UNITY GAGE 39.238 77.057 2060006 B-21 SUS0109 LOWER SUSQUEHANNA AT CONO DAM STATION 39.575 76.109 2050306 B-22

TIME SERIES - 1980 - 1987.....

ANT0203	ANTIETAM R. AT BRIDGE ON POFFENBERGER ROAD	39.595 77.711	2070004	B-23
MON0020	MONOCACY R. BRIDGE OM MD. ROUTE 28	39.244 77.441	2070009	B-24
POT1471	POTOMAC R. AT EASTERN TERMINUS OF WHITES FERRY	39.155 77.519	2070010	B-25
PXT0603	PATUXENT R. AT BRIDGE ON U.S. RT. 50	38.955 76.694	2060006	B-26

ANACOSTIA R. AT BRIDGE ON BLADENSBURG ROAD

B-2

ANTIETAM R. AT BRIDGE ON POFFENBERGER ROAD

CHOPTANK R. AT RED BRIDGES NEAR SEWELL MILLS

85.6

TIME

85.2

OBSERVED

86.4

86

3-SAMPLE MEAN

86.8

87.2

1.9 -

84.4

84.8

CONOCOCHEAGUE C. AT BRIDGE ON MD. ROUTE 68

B-5

GWYNNS FALLS AT ESSEX ROAD IN VILLA NOVA

B-3	11
-----	----

B

N. BR. POTOMAC W. OF MOORES HOLLOW RD. & RTE 51 NBP0103 - TOTAL PHOSPHORUS (PPB)

LOG CONCENTRATION

,

LOG CONCENTRATION

LOG CONCENTRATION

POT1830 - TOTAL PHOSPHORUS (PPB)

LOG CONCENTRATION

LOG CONCENTRATION

0.2

0.6

LOG RUNOFF, IN/YR PRE-BAN + POST-BAN

1.4

1.0

POTOMAC R. BELOW US. RT. 522 IN HANCOCK POT2386 - TOTAL PHOSPHORUS (PPB)

2.2

1.8

2.6

Ъ

m

3-SAMPLE MEAN

87

88

m Π

86

TIME

۵

85

OBSERVED

LOG CONCENTRATION

2.5

2.4

2.3

2.2

2.1

2.0

1.9 1.8

1.7

1.6 -

84

B-.21

LOWER SUSQUEHANNA RIVER AT CONO DAM STATION

LOG CONCENTRATION

LOG CONCENTRATION

ANTIETAM R. AT BRIDGE ON POFFENBERGER ROAD ANTO203 - TOTAL PHOSPHORUS (PPB)

CHESAPEA	KE BA'	r estuar	RY AND	MAIN	STEM DAT	A MEA	NS BY	STATION,	YEAR,	AND S	SEASON	DEI	PTH <= 3	METERS	6	PA	GE 1
STATION	YEAR	SEAS	TC OBS	DTAL P PPB	DIS-P C PPB	PPB	NO23-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	MAX CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
CB1.1 CB1.1 CB1.1	1984 1984 1984	3SUM 4FAL YEAR	4 4 8	38 37 38	12 17 14	8 10 9	1284 1279 1281	25 45 35	234 346 290	1303 986 1144	9.1 6.4 7.8	14 13 14	0.88 1.23 1.03	25.5 13.6 19.6	6.7 9.1 7.9	283 325 304	0.0 0.0 0.0
CB1.1 CB1.1 CB1.1 CB1.1 CB1.1	1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL	2 6 4	65 50 50 41	33 23 23 21	11 10 5 16	1045 852 702 1091	92 105 21 45	329 237	1845 932 602 1473	16.0 9.4 10.5 2.9	31 19 24 4	0.35 0.88 1.10 0.90	6.8 18.4 25.9 13.3	13.3 8.1 7.2 9.3	100 210 325 232	0.0 0.0 0.0 0.0
CB1.1 CB1.1 CB1.1 CB1.1	1985 1986 1986 1986	YEAR 1WIN 2SPR 3SUM	18 2 6 6	50 47 41 33	24 21 9 10	10 8 6 4	876 1490 1037 852	62 69 46 16	274 400 435	1043 1855 1280 617	9.4 10.5 9.9	31 19 15	0.90 0.45 0.77 1.08	18.5 5.8 19.0 25.1	8.3 12.0 8.7 7.1	241 1005 190 296	0.0 0.3 0.0 0.0
CB1.1 CB1.1	1986 1986	4FAL YEAR	4 18	38 38	12 11	76	1068	41 37	373 408	1548 1182	6.4 9.2	12 19	1.00	12.4	10.2	259 331	0.0
CB1.1 CB1.1 CB1.1 CB1.1 CB1.1	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	3 6 2 11	31 53 35 44	13 13 9 12	9 5 5 6	1740 1022 920 1199	50 49 61 51	260 432 360 372	1717 1280 1300 1403	2.0 13.5 9.7 9.7	4 37 12 37	1.53 0.72 1.10 1.01	4.7 16.7 27.4 14.5	9.7 6.7 10.2	221 222 309 236	0.0 0.0 0.0
CB1.1	ALL	ALL	55	43	16	7	1051	48	352	1175	9.2	37	0.93	17.7	8.9	278	0.0
CB2.1 CB2.1 CB2.1	1984 1984 1984	3SUM 4FAL YEAR	4 4 8	76 43 60	20 17 18	11 10 10	1005 1047 1026	67 67 67	210 326 268	1625 904 1264	14.8 11.0 12.9	27 15 27	0.44 0.90 0.67	24.5 13.0 18.7	7.3 9.5 8.4	1625 4133 2879	0.7 2.0 1.3
CB2.1 CB2.1 CB2.1 CB2.1 CB2.1 CB2.1	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	2 5 6 4 17	90 64 86 46 71	42 18 34 20 27	9 7 15 15 12	1000 790 324 901 676	42 61 57 62 57	318 247 282	1600 858 702 1230 978	21.5 12.5 11.7 5.6 11.7	25 19 18 14 25	0.35 0.40 0.48 0.68 0.49	7.3 18.6 25.5 13.0 18.4	13.2 8.6 6.7 9.9 8.5	100 573 3141 3211 2044	0.0 0.1 1.4 1.5 0.9
CB2.1 CB2.1 CB2.1 CB2.1 CB2.1 CB2.1	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	2 6 4 18	58 65 63 58 62	21 11 19 14 15	9 9 7 9 8	1460 1007 516 998 892	52 34 27 42 35	550 590 443 534	1820 1140 612 1288 1072	2.4 14.1 18.6 7.1 12.7	3 22 41 18 41	0.45 0.42 0.50 0.63 0.49	7.3 18.7 24.4 11.7 17.8	11.6 9.3 8.0 10.3 9.4	966 176 798 1568 781	0.3 0.0 0.2 0.7 0.2
CB2.1 CB2.1 CB2.1 CB2.1	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	3 6 2 11	41 71 40 57	11 11 17 12	7 6 14 8	1620 921 548 1044	42 49 145 64	377 573 455 498	1863 1108 1070 1307	5.1 17.9 5.4 12.1	11 29 7 29	1.00 0.45 1.00 0.70	4.2 17.4 27.2 15.6	12.8 9.6 7.0 10.0	1824 757 428 988	0.7 0.1 0.0 0.3
CB2.1	ALL	ALL	54	63	19	10	875	53	433	1119	12.3	41	0.56	17.7	9.1	1532	0.6
CB2.2 CB2.2 CB2.2	1984 1984 1984	3SUM 4FAL YEAR	6 4 10	53 48 51	19 21 20	9 14 11	959 783 888	60 109 80	286 365 318	1590 861 1299	7.5 9.0 8.1	14 17 17	0.58 0.95 0.73	24.8 13.4 20.2	6.9 9.2 7.8	3454 9298 5792	1.7 5.0 3.0
CB2.2 CB2.2 CB2.2 CB2.2 CB2.2 CB2.2	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	2 6 4 18	119 55 63 53 64	56 22 33 32 32	12 12 19 18 16	1020 757 310 794 646	76 76 39 95 68	337 281 303	1658 898 1180 1314 1169	9.3 9.0 6.5 3.3 6.9	13 18 9 5 18	0.35 0.50 0.68 0.90 0.63	7.2 17.6 25.2 13.5 18.0	12.6 8.1 6.6 9.1 8.1	1075 2435 9163 8265 5822	0.3 1.0 4.9 4.4 3.0
CB2.2 CB2.2 CB2.2 CB2.2 CB2.2 CB2.2	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	3 6 6 4 19	74 67 58 57 63	18 18 27 20 21	10 14 19 14 15	1377 954 373 770 798	74 63 33 80 59	700 523 495 543	2085 1106 827 1178 1187	2.6 9.4 7.6 5.8 7.0	5 26 9 10 26	0.33 0.40 0.72 0.63 0.53	3.7 18.3 24.3 12.7 16.7	12.4 8.7 7.4 9.7 9.1	1245 1278 6488 6432 4003	0.4 0.4 3.3 3.3 1.9
CB2.2 CB2.2 CB2.2 CB2.2 CB2.2	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	3 6 2 11	56 58 47 56	13 14 24 15	9 9 19 11	1345 897 479 943	57 55 68 58	565 481 545 516	1780 1091 1355 1327	22.9 10.0 7.9 13.1	62 20 9 62	0.73 0.52 0.85 0.64	4.1 16.6 26.7 14.1	12.7 9.5 6.4 10.1	7780 1748 5852 4443	4.1 0.6 2.9 2.2
c c a 2	A1 F	A1 1	5.8	60	27	1/.	70/	65	1.1.1.	1227	84	62	0.62	17 2	8.8	4951	25

CHESAPEA	KE BAY	' ESTUA	RY AND	MAIN	STEM DAT	A MEA	NS BY	STATION,	YEAR,	AND S	SEASON	DEF	PTH <= 3	METERS	5	PA	GE 2
STATION	YEAR	SEAS	TC OBS	DTAL P PPB	DIS-P C PPB	DRT-P PPB	NO23-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
CB3.1 CB3.1 CB3.1	1984 1984 1984	3SUM 4FAL YEAR	4 4 8	75 39 57	24 19 21	13 13 13	853 561 707	57 104 80	300 314 307	1655 905 1280	17.0 8.1 12.6	58 12 58	0.69 1.45 1.07	24.1 13.4 18.8	6.8 8.9 7.8	7158 13638 10398	3.9 7.7 5.8
CB3.1 CB3.1 CB3.1 CB3.1 CB3.1 CB3.1	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	2 5 6 4 17	79 54 73 49 62	21 18 29 28 25	8 11 17 20 15	1015 666 176 583 515	80 76 28 107 67	337 286 311	1350 853 1368 1188 1172	8.8 15.0 18.9 4.6 13.2	11 32 56 9 56	0.35 0.66 0.72 1.00 0.72	6.7 17.6 25.0 14.0 18.1	12.3 7.5 6.5 8.7 7.7	4683 5620 15350 14778 11099	2.2 2.8 8.7 8.4 6.2
CB3.1 CB3.1 CB3.1 CB3.1 CB3.1 CB3.1	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	62 66 56 55 60	22 17 27 24 22	12 13 18 17 15	1239 787 238 600 675	102 62 35 89 67	710 608 473 580	1844 1013 1118 1155 1239	4.2 11.4 8.9 4.9 7.9	9 38 12 10 38	0.60 0.48 0.88 0.75 0.67	2.6 17.6 24.2 13.1 15.7	12.7 8.5 6.9 9.3 9.0	3168 5056 12057 11029 7973	1.4 2.5 6.7 6.1 4.2
CB3.1 CB3.1 CB3.1 CB3.1	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	70 51 56 58	15 15 18 15	9 9 12 9	1105 748 291 790	53 66 41 57	806 568 585 650	1263 1124 1500 1233	34.0 11.7 13.4 19.4	73 32 16 73	0.88 0.72 0.90 0.80	4.3 15.9 26.6 13.8	12.8 7.6 6.3 9.1	12796 6874 11167 9564	7.1 3.6 6.1 5.2
СВ3.1	ALL	ALL	57	60	21	13	656	67	513	1224	12.6	73	0.77	16.4	8.5	9581	5.2
CB3.2 CB3.2 CB3.2	1984 1984 1984	3SUM 4FAL YEAR	,6 4 10	47 32 41	22 17 20	11 10 11	692 403 576	71 87 77	265 315 285	1529 856 1260	7.8 11.0 9.1	17 23 23	1.05 1.44 1.21	24.5 13.7 20.2	6.5 9.1 7.5	9711 18015 13033	5.3 10.4 7.4
CB3.2 CB3.2 CB3.2 CB3.2 CB3.2 CB3.2	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	3 5 6 4 18	69 61 60 47 59	21 22 27 30 25	7 8 16 15 12	784 510 89 400 391	66 60 55 92 66	323 328 325	994 759 1446 973 1075	14.7 29.7 6.4 4.9 13.9	22 94 14 7 94	0.63 0.98 0.85 1.25 0.94	4.6 17.2 24.9 14.4 17.0	13.3 7.9 6.5 8.8 8.3	14089 9900 19350 19873 15964	8.0 5.4 11.3 11.7 9.2
CB3.2 CB3.2 CB3.2 CB3.2 CB3.2 CB3.2	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	54 48 46 51 49	23 12 20 27 20	9 8 14 22 13	1051 658 105 493 538	109 72 37 86 72	615 572 425 530	1583 872 1348 1144 1211	4.3 18.1 8.0 5.1 9.7	9 68 11 9 68	0.78 0.70 1.18 1.20 0.93	2.9 17.1 24.2 13.4 15.6	12.1 8.5 7.1 9.0 8.9	9535 9483 16383 15136 12694	5.1 5.1 9.4 8.6 7.1
CB3.2 CB3.2 CB3.2 CB3.2 CB3.2	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	50 40 49 45	13 14 16 14	7 7 8 7	955 576 45 614	74 66 65 69	653 599 535 606	1095 1046 1645 1162	23.2 6.4 10.6 12.7	46 9 17 46	1.30 1.02 1.60 1.21	4.3 16.0 26.3 13.8	12.4 9.1 7.1 9.9	15545 11451 15928 1 356 2	8.9 6.3 9.1 7.6
CB3.2	ALL	ALL	60	50	20	11	515	70	464	1168	11.5	94	1.04	16.4	8.7	13905	7.9
CB3.3C CB3.3C CB3.3C	1984 1984 1984	3SUM 4FAL YEAR	6 4 10	50 40 46	17 20 18	7 11 9	319 378 343	66 109 8 83	304 365 328	1332 927 1170	20.5 13.7 17.8	33 29 33	0.99 1.88 1.35	24.5 14.2 20.4	7.5 9.6 8.3	13522 19679 15985	7.7 11.5 9.2
CB3.3C CB3.3C CB3.3C CB3.3C CB3.3C	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	48 51 66 36 52	15 39 29 17 27	6 5 10 10 8	633 352 46 269 300	43 2 44 5 27 9 95 9 49	268 245 258	743 500 1361 781 863	10.3 23.3 12.6 13.8 15.6	12 54 22 30 54	1.83 1.28 0.98 1.55 1.36	3.6 17.2 25.6 15.3 16.6	14.2 10.0 7.1 10.2 9.8	18792 15854 22339 22833 19783	11.0 9.1 13.3 13.6 11.6
CB3.3C CB3.3C CB3.3C CB3.3C CB3.3C	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	37 35 61 48 46	11 11 20 22 16	4 4 8 12 7	811 526 27 271 382	91 5 57 7 18 7 78 2 56	720 857 473 706	1291 686 1404 938 1073	5.7 18.7 24.3 8.2 15.7	8 29 37 12 37	1.13 1.07 0.90 1.75 1.18	3.7 18.4 25.1 13.9 16.6	12.1 10.0 8.9 9.3 10.0	14734 13107 20117 21800 17274	8.4 7.3 11.8 12.9 10.0
CB3.3C CB3.3C CB3.3C CB3.3C	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	34 41 69 43	11 13 21 13	4 5 12 6	753 467 10 486	62 60 58 60 58 60	514 571 508 541	910 736 1643 945	12.2 12.3 22.5 14.0	17 28 25 28	1.53 1.17 1.20 1.29	5.0 16.8 27.1 14.6	12.4 8.8 9.5 10.1	19358 14538 17115 16574	11.3 8.3 9.9 9.6
CB3.3C	ALL	ALL	62	47	19	7	369	59	489	996	15.7	54	1.29	16.8	9.7	17740	10.3

CHESAPEA	KE BAY	' ESTUA	RY AND	MAIN	STEM DAT	A MEAN	S BY S	STATION,	YEAR,	AND S	SEASON	DEF	PTH <= 3	METERS	5	PA	GE 3
STATION	YEAR	SEAS	TC OBS	PPB	DIS-P C PPB	PPB	02 3-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
														~ / /		40007	7 0
CB3.3E CB3.3E CB3.3E	1984 1984 1984	3SUM 4FAL YEAR	5 4 9	42 33 38	14 16 15	7 8 7	351 325 340	72 89 80	300 289 295	1342 870 1132	12.9 13.1 13.0	22 22	1.89 1.44	24.4 14.1 19.8	7.5 9.5 8.3	20532 16238	12.1 9.4
CB3.3E	1985	1WIN 2SPP	3	125	26 18	6	699 320	37 65	237 276	702 491	10.0 19.6	10 43	2.03	5.1 16.9	13.9	18178 16394	10.6 9.4
CB3.3E	1985	3SUM	6	66	31	8	43	38	210	1362	12.0	27	1.05	25.7	7.3	22111	13.1
CB3.3E CB3.3E	1985 1985	4FAL YEAR	4 19	43 61	26 25	12 8	294 287	111 62	256	813 867	11.3	21 43	1.48 1.37	15.1 17.4	9.9 9.3	22075 19677	11.6
CB3.3E	1986	1WIN	4	40	13	6	786	86		1238	5.7	7	1.00	3.7	12.2	14842	8.5
CB3.3E	1986	2SPR	6	26	22	4	525 20	35 23	685 748	1424	15.5	25 67	0.90	25.0	9.8 8.1	20281	11.9
CB3.3E	1986	4FAL	4	42	19	8	240	57	450	870	8.8	12	1.90	13.9	9.4	22300	13.3
CB3.3E	1986	YEAR	20	43	15	7	372	46	638	1067	15.5	67	1.24	16.4	9.7	17473	10.1
CB3.3E	1987	1WIN	3	34	13	6	695	57	480	973	10.2	15	1.73	5.3	12.4	19367	11.3
CB3.3E	1987	2SPR	6	38	13 34	5 10	503	65 58	626 505	1615	12.9	54 43	1.27	26.9	8.9	17548	10.2
CB3.3E	1987	YEAR	11	44	16	8	465	60	597	1010	16.2	43	1.38	15.4	10.0	16387	9.4
CB3.3E	ALL	ALL	59	48	18	7	357	59	485 	1002	14.7	67	1.34	17.1	9.4	17792	10.4
	100/	70104	5	17	20	17	326	123	374	1451	11 6	16	1 06	24.5	6.3	12773	7.2
CB3.3W	1984	4FAL	4	33	19	11	349	146	429	929	8.9	13	1.65	14.4	8.7	20742	12.2
CB3.3W	1984	YEAR	9	41	20	14	336	133	398	1219	10.4	16	1.32	20.0	7.4	16315	9.4
CB3.3W	1985	1WIN	3	62	54	6	609	31	312	617	12.0	13	1.63	5.2	12.3	19944	11.7
CB3.3W	1985	2SPR	6	49	16	7	334	46	267	571	19.5	45	1.08	17.4 25.7	9.4	16628	9.6 12.8
CB3.3W	1985	SSUM 4 FAI	0 4	01 47	21	12	00 356	106		1023	15.6	37	1.17	15.1	10.5	21592	12.8
CB3.3W	1985	YEAR	19	54	26	9	294	64	2 9 0	956	20.8	112	1.15	17.6	9.0	19775	11.6
CB3.3W	1986	1WIN	4	44	19	5	824	110		1258	6.1	.9	0.88	3.4	12.4	14866	8.5
CB3.3W	1986	2SPR	6	31	7	3	497	36	710	762	15.7	25	0.92	18.2	9.3	12976	7.2
CB3.3W	1986	3SUM	6	74	26	16 15	34	23	857	1428	27.9	54 16	0.78	25.5	9.1	21875	13.0
CB3.3W	1986	YEAR	20	50	18	10	384	58	695	1116	16.1	54	1.03	16.5	9.8	16975	9.8
CB3.3W	1987	1WIN	3	34	11	6	780	89	500	1047	9.4	13	1.33	5.3	12.7	18433	10.7
CB3.3W	1987	2SPR	6	45	14	6	542	84	691	958	15.5	29	1.10	17.1	9.3	13595	7.7
CB3.3W	1987	3SUM	2	86	33	16	511	73	655	1735	30.8	52	1.00	26.9	8.0 10 0	18325	9.0
CB2.2M	1987	TEAR		49	10	0	770		5/7	1000	14.0	110	1 1/	17 0	0.0	17552	10.2
CB3.3W	ALL	ALL				10	5/2			1062	10.0		1.14		9. 2		
CB4 1C	1984	351 M	6	37	16	8	189	49	321	1202	13.8	19	1.37	24.4	7.7	15567	9.0
CB4.1C	1984	4FAL	4	31	12	9	174	56	304	678	14.5	30	2.13	15.3	9.5	24033	14.4
CB4.1C	1984	YEAR	10	35	15	8	183	52	314	992	14.1	30	1.67	20.8	8.4	18953	11.1
CB4.1C	1985	1WIN	4	38	52	7	468	26	271	522	8.3	11	2.33	3.7	13.4	21352	12.6
CB4.1C	1985	2SPR	6	48	19	5	277	51	393	515	19.5	29	1.85	25 7	9.8 7 0	19233	14.7
CB4.1C	1985	250M	6	45	15	° °	198	82		566	6.8	14	1.85	15.8	8.8	25975	15.7
CB4.1C	1985	YEAR	20	42	24	6	227	35	323	648	11.1	29	1.80	16.7	9.3	22583	13.5
CB4.1C	1986	1WIN	4	31	10	4	679	68	.	978	5.9	7	1.12	3.5	11.8	17829	10.4
CB4.1C	1986	2SPR	6	22	6	5	475	45	840 500	585	11.1 12 9	23	1.85	17.8	У.1 8 2	10201	9.5 13 5
CB4.10 CB4.10	1986	JSUM 4FAI	০ ব	י כ אצ	19	0 9	224	. 74	384	773	6.4	7	2.10	14.5	8.7	24725	14.9
CB4.1C	1986	YEAR	19	31	11	6	332	49	568	896	9.6	23	1.65	16.5	9.3	20167	11.9
CB4.1C	1987	1WIN	4	25	10	3	506	33	458	669	8.1	12	2.30	4.7	12.4	23342	14.0
CB4.1C	1987	2SPR	6	34	11	3	389	36	566	558	17.2	36	1.77	16.5	10.1	18403	10.7
CB4.1C CB4.1C	1987	SUM STEAR	2 12	42	16 11	6 4	366	43 36	400 516	717	د.ه 12.7	36	1.93	14.3	10.4	20553	12.1
CD4.10	1707 ALL	. LAK		75	14	۳ ۲	200		640	707	· 11 /	20 74	1 76	16.8	94	20825	12 3
604.16	ALL	ALL	01	22	10	0	201	4.7		171	E E # **			.0.0	· • T	~~~~~	

CHESAPEA	KE BAY	ESTUA	RY AND	MAINS	STEM DAT	A MEAN	IS BY S	TATION,	YEAR,	AND S	SEASON	DEF	PTH <= 3	METERS	5	PA	GE 4
STATION	YEAR	SEAS	TC OBS	PPB	DIS-P O PPB	RT-P N PPB	1023-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
CB4.1E CB4.1E CB4.1E	1984 1984 1984	3SUM 4FAL YEAR	5 3 8	36 22 31	18 12 16	7 7 7	172 140 160	60 50 56	284 378 319	1174 584 953	10.5 10.3 10.4	14 18 18	1.56 2.42 1.88	24.5 14.8 20.9	7.4 9.3 8.1	15385 23711 18507	8.8 14.2 10.8
CB4.1E CB4.1E CB4.1E CB4.1E CB4.1E	1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL	2 6 4	36 29 61 28	45 10 30 14	4 6 7 8	567 258 33 195	16 20 24 77	220 200	425 348 1073 473	5.0 14.5 8.6 7.4	6 25 13 15	2.45 1.60 1.43 1.75	7.6 17.5 25.6 15.3	10.7 10.0 6.6 9.1	20083 19922 24783 26142 22943	11.8 11.7 14.9 15.9 13 7
CB4.1E CB4.1E CB4.1E CB4.1E CB4.1E	1985 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL	18 4 6 4	40 30 20 36 35	13 7 13 16	6 4 6 7	203 620 447 26 188 707	53 36 22 66	705 570 370	875 523 1182 673	7.0 9.5 11.0 6.9	11 15 16 12	1.65 1.97 1.56 2.40	3.4 17.7 24.9 14.3	11.8 8.9 7.8 9.3	18477 17039 22928 25613 20808	10.8 9.8 13.7 15.5
CB4.1E CB4.1E CB4.1E CB4.1E CB4.1E CB4.1E	1986 1987 1987 1987 1987	YEAR 1WIN 2SPR 3SUM YEAR	20 3 6 2 11	23 33 40 31	9 12 14 11	5 5	436 360 3 316	38 31 44 35	470 552 440 509	613 487 1175 646	8.4 15.6 9.3 12.5	15 29 11 29	2.40 1.65 1.60 1.85	4.8 16.5 26.5 15.2	9.2 12.4 10.5 7.0 10.4	23717 18845 22050 20756	14.2 11.0 13.1 12.3
CB4.1E	ALL	ALL	57	33	15	6	254	40	431	744	10.1	29	1.81	17.5	9.1	21149	12.5
CB4.1W CB4.1W CB4.1W	1984 1984 1984	3SUM 4FAL YEAR	5 3 8	43 32 39	16 15 16	7 8 7	148 195 166	92 62 81	330 277 310	1383 726 1137	16.7 9.5 14.0	31 13 31	1.15 1.97 1.50	24.4 14.9 20.9	7.1 9.5 8.0	15205 22522 17949	8.7 13.4 10.5
CB4.1W CB4.1W CB4.1W CB4.1W CB4.1W	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	2 6 4 18	171 43 61 37 62	23 19 19 17 19	4 6 9 8	693 286 44 307 255	23 28 36 70 39	244 254 250	603 372 1323 838 818	9.8 17.5 14.4 10.6 14.1	11 29 27 18 29	1.65 1.44 1.07 1.50 1.34	7.8 17.3 25.8 15.0 18.6	11.7 10.2 6.8 10.0 9.0	17350 19097 24100 22975 21432	10.0 11.2 14.5 13.7 12.7
CB4.1W CB4.1W CB4.1W CB4.1W CB4.1W	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	38 25 74 43 46	15 9 27 19 18	4 5 12 7 7	699 460 25 193 324	69 31 27 66 44	713 957 449 747	1032 603 1359 664 928	7.8 9.2 45.1 10.0 19.9	9 12 157 13 157	1.50 1.38 1.02 1.75 1.39	3.7 18.5 25.3 14.2 16.7	13.0 9.3 9.1 9.8 10.1	17219 15276 21896 24358 19467	10.0 8.7 13.0 14.6 11.4
CB4.1W CB4.1W CB4.1W CB4.1W	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	3 6 2 11	24 42 54 39	9 13 20 13	4 4 10 5	613 417 12 397	45 46 52 47	410 648 463 549	842 732 1565 913	7.8 12.6 14.0 11.5	13 19 16 19	2.27 1.42 1.10 1.59	5.3 16.5 26.8 15.3	12.8 9.8 8.1 10.3	20967 17337 20217 18850	12.4 10.0 11.9 11.0
CB4.1W	ALL	ALL	57	49	17	7	294	48	520	920	15.6	157	1.43	17.6	9.5	19756	11.6
CB4.2C CB4.2C CB4.2C	1984 1984 1984	3SUM 4FAL YEAR	6 4 10	33 22 29	13 12 13	7 7 7	121 137 127	54 49 52	289 409 337	1158 532 908	13.5 11.3 12.6	28 17 28	1.78 2.39 2.02	24.6 15.1 20.8	7.8 9.9 8.6	17011 24025 19817	9.8 14.4 11.7
CB4.2C CB4.2C CB4.2C CB4.2C CB4.2C CB4.2C	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	41 29 31 22 31	89 14 10 10 27	5 5 7 6	401 227 15 198 192	27 16 17 76 30	257 211 237	420 193 867 461 494	7.8 12.5 7.5 3.6 8.5	14 23 11 6 23	2.55 1.82 1.75 1.90 1.96	3.6 17.0 25.6 15.3 16.5	13.6 10.5 7.3 9.0 9.7	22825 21067 25267 26667 23798	13.6 12.4 15.3 16.2 14.3
CB4.2C CB4.2C CB4.2C CB4.2C CB4.2C CB4.2C	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	21 15 28 31 23	6 5 9 14 8	3 3 5 4 4	655 430 27 168 316	43 25 24 46 32	730 473 363 479	860 305 1013 538 675	7.7 7.3 9.0 7.9 8.0	10 16 27 11 27	1.70 2.12 2.04 2.55 2.10	3.5 17.6 24.9 14.6 16.4	11.9 9.1 7.2 9.5 9.2	19075 18208 23553 26025 21548	11.2 10.6 14.1 15.8 12.8
CB4.2C CB4.2C CB4.2C CB4.2C	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	25 26 35 27	9 9 13 10	4 4 5 4	485 318 12 323	18 61 49 45	393 593 405 495	603 331 830 505	7.9 15.0 7.2 11.3	11 18 7 18	1.95 1.73 1.85 1.83	4.6 16.4 26.5 14.2	12.4 10.8 6.9 10.7	23213 19272 22850 21182	13.9 11.3 13.6 12.5
CB4.2C	ALL	ALL	62	27	15	5	246	37	408	621	9.6	28	1.99	16.7	9.5	21924	13.0

CHESAPEAK	E BAY	ESTUA	RY AND	MAIN	ISTEM D	ATA MEANS	6 BY	STATION,	YEAR,	AND S	SEASON	DEI	PTH <= 3	METERS	5	PA	GE 5
STATION	YEAR	SEAS	TO OBS	TAL P PPB	DIS-P PPB	ORT-P NO	23-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	MAX CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
CB4.2E CB4.2E CB4.2E	1984 1984 1984	3SUM 4FAL YEAR	5 3 8	33 23 29	15 13 14	7 7 7	112 112 112	34 47 39	292 435 346	1082 488 859	12.0 11.2 11.7	20 18 20	1.35 2.43 1.76	24.7 14.7 21.0	8.1 10.2 8.9	16797 24033 19510	9.7 14.4 11.5
CB4.2E CB4.2E CB4.2E CB4.2E CB4.2E CB4.2E	1985 1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	3 6 6 4 19	61 30 49 28 41	42 22 26 16 25	4 5 6 8 6	414 232 16 186 183	24 20 24 81 35	200 281 241	366 181 840 463 478	5.3 10.7 6.5 4.5 7.2	8 24 12 10 24	2.77 1.97 1.48 1.95 1.94	4.7 17.3 25.6 15.6 17.6	13.4 10.3 7.3 8.9 9.3	22589 21215 25461 27050 24001	13.5 12.5 15.4 16.5 14.4
CB4.2E CB4.2E CB4.2E CB4.2E CB4.2E CB4.2E	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	23 17 39 28 27	8 24 15 13	3 3 5 5	640 429 25 164 297	46 27 32 57 38	755 433 338 455	838 305 963 543 657	6.8 7.3 7.8 5.4 7.0	10 15 23 8 23	1.73 2.27 2.44 2.93 2.34	3.7 17.6 24.9 14.5 16.4	11.9 9.0 7.4 9.1 9.2	19267 18044 23719 26688 21720	11.3 10.5 14.2 16.2 12.9
CB4.2E CB4.2E CB4.2E CB4.2E	1987 1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	3 6 2 11	25 28 36 28	9 11 15 11	4 4 5 4	483 318 6 306	29 28 67 35	380 566 445 493	653 302 685 467	7.9 15.2 7.8 11.8	11 20 8 20	2.20 1.73 1.85 1.88	4.8 16.5 26.6 15.1	12.0 10.5 6.8 10.3	22867 19514 23125 21085	13.6 11.4 13.8 12.5
CB4.2E	ALL	ALL	58	32	17	5	236	37	408	590	8.6	24	2.03	17.2	9.4	22042	13.1
CB4.2W CB4.2W CB4.2W	1984 1984 1984	3SUM 4FAL YEAR	5 3 8	45 24 37	21 13 18	7 7 7 7	98 122 107	61 69 64	272 384 314	1142 552 920	19.4 11.2 16.3	33 15 33	1.47 2.43 1.83	24.9 14.4 20.9	8.6 9.5 8.9	16613 23967 19371	9.6 14.4 11.4
CB4.2W CB4.2W CB4.2W CB4.2W CB4.2W	1985 1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	3 6 6 4 19	28 48 85 31 53	21 27 35 15 26	4 5 16 8 9	458 230 26 245 205	29 21 37 65 37	207 200 203	461 222 1123 675 640	6.0 12.9 10.2 7.5 9.8	8 27 20 14 27	. 2.20 1.80 1.13 1.40 1.57	4.5 17.2 25.5 14.8 - 17.3	13.3 10.1 7.3 9.6 9.4	21500 21139 25117 25033 23272	12.7 12.5 15.2 15.1 13.9
CB4.2W CB4.2W CB4.2W CB4.2W CB4.2W	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	24 22 38 40 31	7 7 11 16 10	4 5 5 6 5	688 393 15 149 290	42 21 39 38 34	985 582 413 593	900 329 1182 523 738	8.2 10.8 11.8 13.2 11.0	12 19 15 24 24	1.83 1.80 1.30 2.00 1.74	3.7 17.9 24.8 14.5 16.4	11.9 9.3 6.8 10.0 9.2	18508 17891 23297 25363 21131	10.8 10.4 13.9 15.3 12.5
CB4.2W CB4.2W CB4.2W CB4.2W	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	3 6 2 11	25 28 55 32	9 10 22 12	4 3 9 4	518 354 2 368	15 41 60 37	473 548 535 525	700 460 1085 639	8.5 14.8 16.8 13.3	10 26 18 26	2.07 1.65 1.70 1.77	4.2 16.0 26.4 14.7	12.6 10.1 7.5 10.3	22233 18324 22650 20177	13.2 10.7 13.5 11.9
CB4.2W	ALL	ALL	58	39	17	6	249	39	449	712	11.8	33	1.70	17.0	9.4	21408	12.7
CB4.3C CB4.3C CB4.3C	1984 1984 1984	3SUM 4FAL YEAR	6 4 10	34 18 27	14 12 13	9 7 8	85 90 87	51 52 52	271 349 302	1084 422 819	12.2 9.8 11.2	18 17 18	1.65 2.53 2.00	24.6 15.0 20.7	7.8 10.0 8.7	17911 24871 20695	10.4 15.0 12.2
CB4.3C CB4.3C CB4.3C CB4.3C CB4.3C CB4.3C	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	44 32 50 21 37	21 18 29 10 20	6 6 12 8 8	359 206 20 195 178	27 22 28 75 3 35	284 245 267	331 178 736 475 435	9.5 12.9 5.5 4.6 8.3	15 27 9 8 27	2.38 1.88 1.72 1.90 1.94	3.2 17.2 25.3 15.2 16.4	13.8 10.5 7.2 8.9 9.6	23767 21688 25817 26909 24386	14.2 12.9 15.6 16.4 14.7
CB4.3C CB4.3C CB4.3C CB4.3C CB4.3C	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	25 19 26 30 24	10 8 10 13 10	4 6 3 5	606 404 21 158 280	6 42 62 22 3 44 0 42	720 402 349 437	761 270 892 528 606	6.7 8.0 5.7 8.1 7.1	9 16 8 11 16	1.78 2.10 2.26 2.35 2.13	3.5 17.4 24.8 14.5 16.3	13.0 9.7 7.4 10.0 9.7	19983 18160 23878 25863 21781	11.8 10.6 14.3 15.7 12.9
CB4.3C CB4.3C CB4.3C CB4.3C	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	23 24 37 26	9 10 16 10	3 5 6 4	502 270 303	2 19 0 22 5 42 5 24	376 567 485 489	631 170 510 380	7.6 17.6 6.5 12.4	9 26 8 26	2.08 1.72 2.05 1.89	4.3 16.4 26.2 14.0	12.5 11.2 7.1 11.0	22488 20508 23650 21692	13.4 12.1 14.2 12.9

27 2.00

16.6 9.8 22429

9.2

2

.

13.4

,

CB4.3C ALL ALL

62

29

14

6

221

38

391

542

CHESAPEA	KE BAY	ESTUA	RY AND	MAINS	STEM DA	ATA ME	ANS BY	STATION,	YEAR,	AND S	SEASON	DEI	PTH <= 3	METERS	:	PA	GE 6
STATION	YEAR	SEAS	TO OBS	TAL P PPB	DIS-P PPB	ORT-P PPB	NO23-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
CB4.3E CB4.3E CB4.3E	1984 1984 1984	3SUM 4FAL YEAR	5 3 8	34 19 28	13 12 13	7 7 7	76 72 75	50 41 46	240 370 289	1028 281 748	10.4 11.0 10.6	15 19 19	1.56 2.10 1.76	24.7 14.6 20.9	7.9 10.4 8.9	17787 25244 20583	10.3 15.2 12.2
CB4.3E CB4.3E CB4.3E CB4.3E CB4.3E	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	3 6 6 4 19	41 31 34 26 32	22 21 12 16 17	6 8 11 6 8	320 213 18 140 153	23 20 52 90 45	235 241 238	210 154 698 355 377	10.8 13.5 6.6 2.4 8.7	13 31 11 4 31	2.37 1.90 1.75 2.18 1.98	4.4 17.1 25.3 15.5 17.4	13.5 10.5 7.0 8.6 9.2	24544 21892 26156 28450 25038	14.8 13.0 15.9 17.4 15.1
CB4.3E CB4.3E CB4.3E CB4.3E CB4.3E	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	21 16 27 31 23	8 7 12 15 10	3 4 6 4	541 397 23 141 262	37 33 43 55 41	663 458 375 465	638 281 827 519 564	7.1 7.9 7.1 8.0 7.5	9 18 9 15 18	1.43 2.27 2.08 2.43 2.07	3.6 17.4 24.8 14.4 16.2	11.8 9.6 7.4 9.6 9.4	20833 18897 24258 26750 22463	12.3 11.0 14.6 16.3 13.4
CB4.3E CB4.3E CB4.3E CB4.3E	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	3 6 2 11	22 25 37 27	9 10 18 11	4 5 13 6	416 229 13 241	23 18 83 31	430 610 385 520	560 122 310 275	7.3 19.6 8.1 14.2	8 25 9 25	2.20 1.77 1.80 1.89	4.6 16.9 26.1 15.2	12.5 11.2 6.9 10.8	24200 21242 24200 22586	14.5 12.6 14.5 13.5
CB4.3E	ALL	ALL	58	27	13	6	196	5 41	406	473	9.6	31	1.96	17.0	9.5	23071	13.8
CB4.3W CB4.3W CB4.3W	1984 1984 1984	3SUM 4FAL YEAR	5 3 8	58 20 44	19 12 16	7 7 7	89 114 98	0 69 54 3 63	269 365 305	1177 463 909	39.2 8.6 27.7	135 15 135	1.39 2.50 1.81	24.9 14.4 20.9	8.4 9.9 8.9	17285 24183 19872	10.0 14.5 11.7
CB4.3W CB4.3W CB4.3W CB4.3W CB4.3W	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	3 6 4 19	40 46 94 29 56	10 33 29 14 24	5 5 11 7	433 216 24 222 191	23 5 18 42 2 62 1 36	213 228 221	403 228 988 568 567	6.3 15.3 32.2 5.6 17.2	11 27 142 9 * 142	2.00 1.73 1.03 1.63 1.53	4.6 17.2 25.4 15.1 17.4	13.5 9.9 6.6 9.3 9.1	22378 21471 25521 25942 23834	13.3 12.7 15.4 15.7 14.3
CB4.3W CB4.3W CB4.3W CB4.3W CB4.3W	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	24 22 44 38 32	7 8 14 15 11	4 5 8 4 5	653 404 24 149 288	3 72 4 15 1 22 3 36 3 33	810 575 400 556	845 277 1070 563 686	8.5 10.7 12.8 12.2 11.2	12 19 29 19 29	1.70 1.87 1.44 2.18 1.78	3.7 17.8 24.8 14.5 16.4	12.3 9.6 6.8 10.3 9.5	19158 18268 23669 25788 21570	11.2 10.6 14.2 15.6 12.8
CB4.3W CB4.3W CB4.3W CB4.3W	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	3 6 2 11	23 32 40 31	8 10 17 11	5 5 11 6	517 313 17 315	7 24 3 42 7 43 5 37	363 610 450 514	733 333 765 521	9.1 21.1 8.4 15.5	11 34 10 3 4	1.97 1.63 1.70 1.74	4.2 16.0 26.1 14.6	12.7 11.0 6.8 10.7	21767 19373 23350 20749	12.9 11.4 14.0 12.3
CB4.3W	ALL	ALL	58	41	16	6	23	5 39	435	646	16.3	142	1.69	17.0	9.5	21922	13.0
CB4.4 CB4.4 CB4.4	1984 1984 1984	3SUM 4FAL YEAR	6 4 10	36 20 29	15 13 14	i. 7 5 7 6 7	50 64 50	6 44 4 39 9 42	285 369 319	1097 283 771	11.2 12.0 11.5	14 18 18	1.67 2.35 1.94	24.9 15.6 21.2	8.0 10.0 8.8	18700 25567 21447	10.9 15.5 12.7
CB4.4 CB4.4 CB4.4 CB4.4 CB4.4	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	29 29 40 25 31	66 17 18 13 26		294 200 144 153	4 26 6 19 9 12 9 62 3 27	277 290 283	239 130 518 319 306	9.3 17.0 7.5 9 4.6 5 10.3	11 33 18 7 33	2.05 2.02 1.40 1.90 1.82	5.5 17.5 25.9 16.0 17.3	12.5 11.0 7.8 9.4 9.9	25017 21872 25867 28167 24958	15.1 13.0 15.7 17.2 15.1
CB4.4 CB4.4 CB4.4 CB4.4 CB4.4	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	24 16 29 33 25	10 6 5 14 5		623 39 1 13 27	8 45 1 25 0 13 0 36 2 28	850 512 423 541	770 204 786 470 545	6.4 10.1 12.3 9.6 9.9	24 24 18 11 24	1.88 2.33 1.72 2.18 2.04	4.0 18.1 25.5 14.7 16.8	12.3 9.9 8.1 9.5 9.8	19948 19907 24556 27200 22768	11.7 11.7 14.8 16.6 13.6
CB4.4 CB4.4 CB4.4 CB4.4	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	22 26 34 26	9 10 13 10) 2) 2 3 2	41 22 1 25	4 13 9 23 5 17 5 18	414 659 330 523	504 169 365 313	7.4 21.2 7.5 7.5 14.3	10 27 9 27	2.30 1.66 1.65 1.89	5.1 17.2 26.9 14.8	12.4 12.4 7.9 11.7	24546 20708 24300 22586	- 14.8 12.2 14.6 13.5

5

16

CB4.4

ALL ALL

62

28

196

28

435 460 11.2

æ

33 1.92 17.3 10.0 23226

13.9

-

CHESAPEA	KE BAY	ESTUAR	Y AND	MAIN	STEM DAT	A MEAN	S BY S	STATION,	YEAR,	AND S	SEASON	DEF	PTH <= 3	METERS	S	PA	GE 7
STATION	YEAR	SEAS	TO OBS	PPB	DIS-P O PPB	RT-PN PPB	02 3-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SAL I N PPT
CB5.1 CB5.1 CB5.1	1984 1984 1984	3SUM 4FAL YEAR	6 4 10	30 21 27	14 12 13	7 7 7	40 64 50	50 49 49	351 382 363	1079 282 760	9.3 9.8 9.5	14 14 14	1.86 2.20 2.00	24.7 15.7 21.1	7.3 10.0 8.3	19467 25958 22063	11.4 15.7 13.1
CB5.1 CB5.1 CB5.1 CB5.1	1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL	4 6 4	31 41 31 27	17 27 12 16	5 5 6 5	247 180 8 112	20 17 12 60 24	226 309 261	209 126 465 205 260	12.5 12.7 5.8 4.8	18 25 9 10 25	2.20 2.23 1.42 1.78 1.89	5.6 18.2 26.2 16.2	12.5 10.1 7.4 9.1 9.4	25025 22878 26800 29492 25807	15.1 13.6 16.3 18.1 15.6
CB5.1 CB5.1 CB5.1 CB5.1 CB5.1	1985 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL	4 5 6 4	23 16 24 27	10 6 7 13	5 3 4 5	558 362 13 95	39 24 38 61	783 465 390	620 181 648 448	6.2 9.6 8.3 5.9	7 22 15 8	2.00 2.40 1.72 2.58	4.0 17.8 25.5 14.8	12.4 9.5 7.8 8.9	21252 20956 25658 28050 23845	12.6 12.4 15.5 17.1 14 3
CB5.1 CB5.1 CB5.1 CB5.1 CB5.1	1986 1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	22 26 35 26	8 11 13 10	4 5 9 5	243 391 159 20 213	21 18 35 21	364 753 410 566	462 466 83 165 224	9.1 25.6 8.5 17.2	17 34 12 34	2.40 1.50 1.70 1.86	5.2 17.7 26.7 15.0	12.2 11.6 7.8 11.2	24896 21983 25375 23519	15.0 13.1 15.3 14.1
CB5.1	ALL	ALL	61	27	13	5	169	32	443	399	10.3	34	1.99	17.4	9.6	24127	14.5
CB5.2 CB5.2 CB5.2	1984 1984 1984	3SUM 4FAL YEAR	6 4 10	32 20 27	14 12 13	7 7 7	40 42 41	29 . 30 29	303 303 303	948 233 662	9.5 8.3 9.0	15 10 15	1.83 2.25 2.00	24.7 15.8 21.2	7.5 10.2 8.5	20067 26694 22718	11.8 16.2 13.6
CB5.2 CB5.2 CB5.2 CB5.2 CB5.2 CB5.2	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	34 13 39 24 27	22 8 22 14 16	5 4 6 5	233 156 7 96 114	20 25 11 66 28	238 272 253	160 114 469 228 253	13.8 10.4 4.7 3.7 8.0	24 20 6 7 24	2.50 2.50 1.97 1.98 2.24	4.9 17.7 25.9 16.3 17.3	12.7 10.7 7.2 8.7 9.5	25342 23804 27576 29900 26463	15.3 14.3 16.8 18.4 16.1
CB5.2 CB5.2 CB5.2 CB5.2 CB5.2 CB5.2	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	21 15 25 31 22	10 7 8 15 9	3 3 4 3 3	464 337 90 214	27 22 37 61 35	755 417 414 477	460 126 538 439 379	6.9 9.1 7.8 7.3 7.9	9 15 19 10 19	2.13 2.33 2.20 2.65 2.32	4.1 17.6 25.5 15.0 16.7	12.4 9.8 7.5 8.7 9.4	22531 21878 26226 28600 24658	13.4 13.0 15.9 17.5 14.9
CB5.2 CB5.2 CB5.2 CB5.2	1987 1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	19 24 33 24	8 10 13 10	3 5 5 4	361 139 4 191	8 11 33 13	369 710 335 534	430 79 170 211	7.1 30.4 6.4 18.6	11 44 9 44	2.50 1.32 2.30 1.93	5.1 17.2 26.7 14.7	12.9 11.5 9.0 11.6	24850 22694 26017 23967	15.0 13.5 15.8 14.4
CB5.2	ALL	ALL	62	25	12	4	150	28	411	351	10.2	44	2.17	17.2	9.7	24793	14.9
CB5.3 CB5.3 CB5.3	1984 1984 1984	3SUM 4FAL YEAR	4 4 8	31 19 25	13 12 13	7 7 7	40 40 40	32 21 27	329 378 351	790 226 540	9.2 7.9 8.6	17 10 17	2.02 2.35 2.17	24.3 15.4 20.4	7.3 9.9 8.5	21353 25808 23333	12.7 15.6 14.0
CB5.3 CB5.3 CB5.3 CB5.3 CB5.3	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	45 18 46 33 35	21 14 26 20 20	6 5 6 5	229 89 83 93 93	9 19 28 38 55 55 35	219 353 277	94 109 641 434 331	9.3 14.8 4.4 6.7 8.9	15 35 7 14 35	1.98 2.13 1.98 1.60 1.95	4.8 17.7 25.7 16.1 17.2	13.3 9.3 7.0 8.9 9.1	25175 24850 27956 28258 26528	15.2 15.0 17.1 17.3 16.1
CB5.3 CB5.3 CB5.3 CB5.3 CB5.3	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	20 16 37 28 25	10 7 19 13 12	4 3 6 3 4	437 281 8 71 188	26 18 27 51 3 29	560 502 435 488	399 132 520 488 373	5.4 7.1 8.0 6.7 7.0	8 10 15 10 15	2.10 2.53 2.40 2.83 2.47	4.0 17.6 25.4 14.9 16.7	12.3 9.2 7.2 9.2 9.2	23385 23853 27675 28613 25858	14.0 14.3 16.9 17.5 15.7
CB5.3 CB5.3 CB5.3 CB5.3	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 5 2 11	23 28 37 27	9 12 14 11	4 7 5 5	333 109 6 172	5 13 9 19 5 50 2 22	426 709 532 574	403 167 424 299	7.6 27.6 7.0 16.6	12 44 9 44	2.18 1.20 2.10 1.77	5.0 16.6 26.4 14.2	12.9 10.4 7.4 10.8	24967 23500 26150 24515	15.1 14.1 15.9 14.8
CB5.3	ALL	ALL	59	29	15	5	131	29	441	370	9.7	44	2.12	16.9	9.4	25457	15.4

~

-

. •

CHESAPEA	KE BAY	ESTUA	RY AND	MAIN	STEM DAT	A MEANS	S BY	STATION,	YEAR,	AND S	SEASON	DE	PTH <= 3	METERS	;	PA	GE 8
STATION	YEAR	SEAS	TC OBS	DTAL P PPB	DIS-P C PPB	PPB	02 3-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
LE2.3 LE2.3 LE2.3	1984 1984 1984	3SUM 4FAL YEAR	5 4 9	29 20 25	13 14 14	7 8 7	40 40 40	29 32 30	296 408 346	966 410 719	8.0 8.0 8.0	13 10 13	2.05 2.03 2.04	24.4 15.6 20.5	7.7 9.8 8.6	19320 24471 21609	11.3 14.7 12.8
LE2.3 LE2.3 LE2.3 LE2.3 LE2.3	1985 1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	48 43 37 29 39	37 12 16 15 19	6 7 5 5 6	270 90 8 208 125	22 19 26 65 31	244 395 309	146 264 708 598 441	12.6 17.1 5.3 3.9 9.9	20 45 8 7 45	2.00 2.03 1.47 1.75 1.80	3.6 18.0 25.7 16.0 17.0	13.1 9.8 7.0 9.0 9.2	24144 22660 26767 26667 24990	14.5 13.5 16.3 16.2 15.1
LE2.3 LE2.3 LE2.3 LE2.3 LE2.3 LE2.3	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	4 6 4 20	21 15 27 33 23	6 6 9 14 8	4 5 4 4	460 305 5 95 204	21 29 33 51 33	740 406 413 469	458 190 563 553 428	6.0 7.5 8.0 6.9 7.2	8 10 16 8 16	1.90 2.37 2.16 2.55 2.25	4.1 17.6 25.5 14.9 16.7	12.4 9.2 7.5 9.0 9.3	22517 21558 26267 27888 24428	13.4 12.8 15.9 17.0 14.7
LE2.3 LE2.3 LE2.3 LE2.3	1987 1987 1987 1987	1WIN 2SPR 3SUM YEAR	4 6 2 12	22 29 45 29	9 11 13 10	3 5 5 4	390 204 4 233	14 29 28 23	436 692 428 563	528 301 745 451	6.7 25.7 10.0 16.8	13 39 11 39	2.45 1.48 1.80 1.89	5.5 16.7 26.4 14.6	13.0 10.9 7.5 11.0	23392 20663 24475 22208	14.0 12.2 14.7 13.2
LE2.3	ALL	ALL	61	30	13	5	160	30	441	479	10.1	45	2.00	17.0	9.5	23760	14.3
MEE1.1 MEE1.1	1984 1984	4FAL YEAR	4 4	88 88	50 50	13 13	70 70	50 50	817 817	100 100	8.9 8.9	15 15	2.09 2.09	12.7 12.7	10.1 10.1	23303 23303	13.9 13.9
MEE1.1 MEE1.1 MEE1.1 MEE1.1 MEE1.1	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	2 6 4 18	45 55 98 65 70	35 52 65 50 53	15 10 14 15 13	198 163 22 140 115	40 30 31 76 42	500 678 821 465 659	100 430 1165 336 618	9.1 16.3 5.4 10.6	14 43 8 43	2.15 1.38 1.18 2.35 1.62	6.3 18.0 25.5 14.4 18.4	11.7 9.8 7.0 9.7 9.0	22202 20972 24004 26037 23245	13.2 12.4 14.4 15.8 13.9
MEE1.1 MEE1.1 MEE1.1 MEE1.1 MEE1.1 MEE1.1	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	3 6 4 19	53 54 64 60 58	40 39 53 43 44	17 9 12 6 11	563 334 23 118 227	37 29 52 52 42	477 605 567 510 555	503 663 1075 750 786	4.6 8.9 8.4 5.8 7.4	6 22 20 11 22	2.00 2.25 1.80 2.25 2.07	4.3 18.1 25.0 13.4 17.1	12.0 8.9 7.1 9.1 8.9	20318 18768 22941 25842 21820	12.0 10.9 13.7 15.6 13.0
MEE1.1 MEE1.1	1987 1987	1WIN YEAR	1 1	70 70	60 60	4 4	210 210	36 36	500 500	200 200	4.4 4.4	4 4	2.40 2.40	3.8 3.8	11.2 11.2	25600 25600	15.5 15.5
MEE1.1	ALL	ALL	42	67	49	12	163	42	620	676	8.7	43	1.88	16.9	9.1	22662	13.5
MEE2.1 MEE2.1 MEE2.1	1984 1984 1984	3SUM 4FAL YEAR	4 4 8	73 94 83	60 60	13 14 13	77 59 67	43 286 164	800 591 696	125 125	16.1 6.4 10.6	30 10 30	1.26 1.70 1.48	23.8 11.8 17.8	7.7 10.3 8.8	17282 23225 20253	10.0 13.9 11.9
MEE2.1 MEE2.1 MEE2.1 MEE2.1 MEE2.1	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	1 5 6 4 16	55 50 68 80 64	35 37 55 45 46	15 12 13 13 13	140 164 37 91 97	35 45 52 85 7 57	565 699 608 508 609	200 458 1099 370 660	15.3 7.0 5.5 5.6 6.6	15 14 7 8 15	1.40 1.68 1.23 1.98 1.57	5.6 19.6 25.5 14.6 19.7	11.6 8.9 6.8 8.9 8.3	24033 21088 24484 27000 24024	14.4 12.5 14.7 16.4 14.4
MEE2.1 MEE2.1 MEE2.1 MEE2.1 MEE2.1	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	2 5 3 15	75 46 72 75 64	40 44 46 57 47	10 9 10 10 10	520 338 22 120 222	25 23 59 246 240	475 470 576 583 529	325 347 1110 867 680	5.4 6.3 10.4 7.4 7.7	7 10 38 10 38	2.05 2.32 1.30 1.47 1.81	4.8 18.0 24.5 12.2 17.3	12.0 9.0 7.3 9.9 9.0	20117 19783 23473 26500 22237	11.8 11.6 14.0 16.1 13.2
MEE2.1 MEE2.1	1987 1987	1WIN YEAR	1 1	70 70	60 60	6 6	370 370) 64) 64	450 450	900 900	4.9	5 5	2.00 2.00	4.3 4.3	10.9 10.9	25767 25767	15.6 15.6
MEE2.1	ALL	ALL	40	68	47	12	148	3 72	592	646	7.7	38	1.65	18.0	8.7	22633	13.5
MEE2.2 MEE2.2	1984 1984	4FAL YEAR	1	50 50		15 15	58 58	3 1800 3 1800	500 500		6.3 6.3	6 6	2.40 2.40	17.1 17.1		21667 21667	12.8 12.8

C-8

~

-

. •

•

C-9	ø

•

:

CHESAPEA	KE BAY	Y ESTUA	RY AND	D MAIN	STEM DAT	A MEA	NS BY	STATION,	YEAR,	AND S	SEASON	DE	PTH <= 3	METERS	5	PA	GE 9
STATION	YEAR	SEAS	TO OBS	DTAL P PPB	DIS-P C PPB	DRT-P PPB	NO2 3-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
MEE2.2	ALL	ALL	1	50		15	58	1800	500		6.3	6	2.40	17.1		21667	12.8
MEE3.1 MEE3.1	1984 1984	4FAL YEAR	2 2	65 65	40 40	10 10	106 106	20 20	640 640	250 250	4.3 4.3	4 4	1.95 1.95	11.4 11.4	9.7 9.7	27317 27317	16.6 16.6
MEE3.1	1985	1WIN	3	63	50	20	155	230	583	163	4.3	4	0.85	4.4	11.6	25522	15.4
MEE3.1	1985	ZSPR	5	66 159	42	10	90	102	680	55Z	4.8	8	1.07	20.8	(.)	22209	15.5
MEEJ.I MEEZ 1	1902	220M	6	150	63	18	27	110	514	508	4.J 3 3	4	1 40	15 0	8.5	20323	18.0
MEE3.1	1985	YEAR	18	98	54	17	82	116	632	605	4.3	8	1.18	18.4	8.1	26894	16.4
MEE3.1	1986	1WIN	2	65	35	10	380	25	525	500	5.8	7	1.05	2.5	12.5	23933	14.4
MEE3.1	1986	2SPR	5	52	30	9	239	66	499	386	3.2	4	1.74	17.8	7.9	23707	14.2
MEE3.1	1986	3SUM	5	70	50	11	50	46	500	610	10.1	20	0.98	25.0	7.1	26767	16.3
MEE3.1 MEE3.1	1986	4FAL YEAR	4 16	83 67	55 43	10	65 154	92 61	508	425 480	5.6	20	1.31	17.0	9.0 8.5	26196	15.9
MEE3.1	1987	1WIN	1	90	60	4	120	8	600	200	7.6	8	0.60	3.7	11.3	27733	16.9
MEE3.1	1987	YEAR	1	90	60	4	120	8	600	200	7.6	8	0.60	3.7	11.3	27733	16.9
MEE3.1	ALL	ALL	37	82	49	13	115	86	576	528	5.0	20	1.26	17.0	8.4	26638	16.2
MET4.1 MET4.1	1984 1984	4FAL YEAR	1 1	120 120	50 50	10 10	570 570	20 20	930 930	1650 1650	41.2 41.2	54 54	0.60 0.60	5.8 5.8	11.7 11.7	9348 9348	5.0 5.0
NET/ 1	1005	4117.61	,	141	47	40	1701	120	1097	1011	60 3	40	0.23	8.2	10.8	2/00	1 2
META 1	1905	2SPR	4	242	57	18	567	72	1908	1883	70.1	110	0.18	20.0	9.8	2078	0.8
MET4.1	1985	3SUM	6.	257	58	18	22	23	1699	938	57.1	81	0.20	26.4	7.1	5145	2.5
MET4.1	1985	4FAL	4	203	65	30	1163	85	1065	2590	29.8	57	0.21	14.5	8.6	1469	0.5
MET4.1	1985	YEAR	20	222	60	25	673	71	1491	2173	53.3	110	0.20	18.4	8.9	2941	1.3
MET4.1	1986	1WIN	1	250	60	20	3000	30	1030	4420	19.0	19	0.20	8.0	10.7	258	0.0
MET4.1	1986	2SPR	5	252	42	15	810	25	1505	1800	35.2	58	0.27	19.7	8.1	1595	0.6
MET4.1	1986	3SUM	6	301	49	13	31	12	1643	980	61.4	100	0.22	24.6	6.6	4621	2.3
MET4.1 MET4.1	1986 1986	4FAL YEAR	4 16	210 260	55 49	16 15	688 635	44 26	1333 1485	3475 2059	49.1	100	0.35	18.8	8.2	4649 3303	1.6
		.			-		4700						0 (0		12 (477	0.0
MET4.1	1987		1	100	70 70	26	1700	52	600 600	5500			0.40	1.6	12.6	133	0.0
ne 14. 1	1907	1646	-	000		20	1700	52	4450	3300	(0.0	440	0.05	17.0	0.0	7101	1 5
ME14.1	ALL	ALL				20	080		1450	2195	49.2		0.25		0.0	2141	
NET ()	400/	(7	70	75	10	220	47	470	5 75	10 7	17	1 79	10 /	10 6	10997	11 7
MET4.2 MET4.2	1984	4FAL YEAR	3	70 70	35 35	10	229	67	670	575	10.7	17	1.78	10.4	10.8	19883	11.7
MET/ 2	1085	1មករ	7	53	60	13	523	120	573	577			1 97	42	12 0	17578	10.2
MET4.2	1985	2SPR	6	81	40	10	294	50	757	627	23.0	51	1.31	17.3	9.1	16561	9.5
MET4.2	1985	3SUM	6	103	63	23	40	69	800	1938	17.8	31	0.75	25.4	6.4	20977	12.4
MET4.2	1985	4FAL	4	80	47	10	231	81	550	875	10.9	16	1.23	14.2	9.6	21517	12.8
MET4.2	1985	YEAR	19	83	49	14	237	74	698	1085	17.7	51	1.22	17.1	8.6	19159	11.2
MET4.2	1986	1WIN	3	63	37	10	678	33	485	1210	14.4	28	1.37	1.8	13.0	16922	9.7
MET4.2	1986	2SPR	6	46	28	8	403	35	509	553	7.9	11	1.44	18.0	8.7	15096	8.6
MET4.2	1986	3SUM	6	103	52	15	27	26	652	1/08	15.9	22	0.93	24.9	7.8	19807	11.0
MET4.2 MET4.2	1986	4FAL YEAR	4 19	74	56 43	10	280	04 38	570	1124	11.6	28	1.43	16.6	9.4	18325	10.7
457/ 5	400-	A			••		100	.	E00	1/00	44.4	47	4 /0	7 /	10 0	10577	11 /
MET4.2 MET4.2	1987 1987	1WIN YEAR	1	100	80 80	14 14	600 600	56 56	580 580	1400	16.6	17	1.60	3.4 3.4	12.8	19533	11.4
MET4.2	ALL	ALL	42	79	46	13	265	57	635	1086	14.0	51	1.37	16.1	9.1	18843	11.0
MET5.1	1984	3SUM	4	108		33	326	28	888		27.7	30	0.48	24.3	7.1	1061	0.2
MET5.1	1984	4FAL	4	123	40	20	347	43	1198	850	25.8	31	0.44	12.2	9.8	3284	1.4
MET5.1	1984	YEAR	8	115	40	26	338	35	1043	850	26.5	31	0.46	18.2	8.3	2172	0.8
MET5.1	1985	1WIN	5	194	100	42	1710	92	1212	2256	23.1	23	0.27	7.0	11.6	486	0.1

CHESAPEAKE BAY ESTUARY AND MAINSTEM DATA MEANS BY STATION, YEAR, AND SEASON DEPTH <= 3 METERS MAX CHL-A CHL-A SECCHI TEMP D.O. TKN TOTAL P DIS-P ORT-P NO23-N NH34-N SI DEG-C PPM OBS PPB PPB PPB PPB PPB PPB PPB PPB PPB METERS YEAR SEAS 40 0.28 19.8 7.0 93 1018 497 22.9 57 823 1985 2SPR 6 158 20 26.3 5.5 27.8 33 0.31 1985 3SUM 6 162 67 27 48 32 1027 1205 870 137 917 3533 13.8 25 0.27 12.9 7.7 57 30 1985 4FAL 3 123 17.5 7.6 0.28 40 1054 1605 22.7 1985 YEAR 20 163 69 29 819 81 5.1 0.27 3.4 12.6 328 958 5133 11 25 2095 1986 1WIN 3 115 52 20.4 7.5 50 23 828 84 905 1208 12.1 18 0.32 1986 2SPR 6 117 59 1282 1575 27.5 41 0.32 26.0 6.6 30 60 1986 3SUM 6 190 66

PAGE 10

SALIN

PPT

1.2

3.3

0.6

1.5

0.0

1.0

COND

UHOS

2876

6506

1793

3205

173

2403

MET5.1	1986	3SUM	ő	190	66	30	60	59	1282	1575	27.5	41	0.32	26.0	6.6	6207	3.2
MET5 1	1986	4FA1	ŭ	158	53	24	283	112	1000	2275	22.1	28	0.33	13.6	8.8	7308 ·	3.8
METS 1	1086	YFAR	10	148	56	26	671	123	1052	2168	18.3	41	0.31	18.1	8.3	4285	2.1
ri l : 2 : 1	1700	1 LEAN	.,	140	20		••••										
MET5 1	1087	1นาท	1	100	90	48	2300	116	950	6000	0.8	1	0.20	2.5	11.8	179	0.0
MCT5 1	1087	VEAD	1	100	áñ	48	2300	116	950	6000	0.8	1	0.20	2.5	11.8	179	0.0
MEID.I	1907	TEAR		170	,0	40	2000		/20			•					
WETE 1	A 1 1		/ 9	150	67	28	710	٥n	1049	1928	20.7	41	0.32	17.5	8.1	3397	1.6
MC12.1	ALL	ALL	40														
WETE 0	109/	70.04	F	0/		50	60	64	760		16.8	27	0.72	24.7	6.5	12802	7.1
MEID.2	1904	250M	2	94 00	75	70	50	25.8	588	300	6.5	0	1 21	12 1	10.1	20199	11.9
MEID.2	1984	4FAL	4	00	22	20	40	170	693	300	10.0	27	1 00	10 1	8 1	16090	9.2
MET5.2	1984	TEAR	y	91	22	41	00	139	005	500	10.7	C 1	1.00		0.1	10070	
	4005		7	17	67	17	200	97	537	/ 93	18 3	18	1 55	43	11 5	19714	11.6
MEID.2	1985	IWIN	2	20	51	17	290	74	221	905	11 0	36	0.87	18.0	8 7	18875	11 0
MET5.2	1985	ZSPR	2	70	45	15	90	30 /F	777	1042	11.7	24	0.07	25.8	6.5	21656	12.8
MET5.2	1985	3SUM	0	100	00	21	44	45	F07	4/5	F 4	11	1 33	16 7	8 7	22762	13 6
MET5.2	1985	4FAL	4	93	68	35	104	50	242	1000	10 /	727	1.04	17.5	8 5	206/7	12 2
MET5.2	1985	YEAR	18	84	58	23	112	57	110	1000	10.4	54	1.00	1	0.5	20047	12.2
			_						150	4000	40.7	10	1 77	/ 0	12 0	15711	0 0
MET5.2	1986	1WIN	3	65	37	12	(15	20	650	1002	10.7	12	1.20	4.0	12.7	14020	9.0
MET5.2	1986	2SPR	6	67	43	10	240	26	651	950	(.)	10	1.12	19.0	0.0	10029	12 0
MET5.2	1986	3sum	6	93	76	33	64	59	603	2400	7.8	12	1.17	22.0	0.0	20437	12.0
MET5.2	1986	4FAL	4	95	75	28	68	95	494	1633	5.9	12	1.95	15.4	8.7	23933	14.4
MET5.2	1986	YEAR	19	81	57	21	242	48	603	1556	7.9	16	1.35	17.8	8.7	19288	11.5
														~ -		47/00	40.4
MET5.2	1987	1WIN	1	80	90	33	605	156	605	2200			1.80	2.7	11.5	17400	10.1
MET5.2	1987	YEAR -	. 1	80	90	33	605	156	605	2200			1.80	2.7	11.5	17400	10.1
															~ /		44 0
MET5.2	ALL	ALL	47	84	57	26	164	71	662	1287	9.4	34	1.18	17.6	8.6	19156	11.2
MET7.1	1986	1WIN	2	130	55	15	1400	320	1080	3800	2.2	3	0.30	4.3	11.3	9372	5.0
MET7.1	1986	2SPR	3	100	33	12	563	111	833	1500	7.2	10	0.53	20.1	6.9	14311	8.1
MET7_1	1986	3SUM	3	163	63	13	47	13	950	1500	21.1	31	0.47	25.5	6.4	15856	9.1
MET7.1	1986	YFAR	8	131	50	13	579	127	939	2075	11.2	31	0.45	18.2	7.8	13655	7.7
	.,	,	_														
MET7.1	ALL	ALL	8	131	50	13	579	127	939	2075	11.2	31	0.45	18.2	7.8	13655	7.7
MIE2 2	1984	3SUM	2	95		35	53	25	850		11.9	12	0.73	25.5	6.3	14020	7.9
MIE2 2	1084	4 F 4 I	Ā	111	35	18	117	83	719	438	7.9	8	2.13	13.7	9.9	21518	12.8
MIE2 2	1084	VEAD	6	106	35	23	95	63	763	438	9.2	12	1.57	17.6	8.7	19018	11.1
71LLL.L	1704	I LAN	Ŭ	100													
MIE2 2	1085	1010	٦	51	37	10	556	28	566	796			1.10	6.3	13.2	17239	10.0
MIE2 2	1085	2000	5	86	48	16	64	46	994	512	32.9	93	1.07	20.0	10.7	18751	10.9
MLEZ.Z	1905	ZOUM	4	97	57	20	20	40	657	1537	8.8	13	1.23	25.3	6.5	23657	14.2
MLEZ.Z	1900	220M	,	77	50	15	361	116	640	1300	5 0	11	1.70	15.1	8.9	20829	12.4
MLEZ.Z	1902	4FAL	4	75	20	16	107	50	732	1076	17.2	93	1.27	18.5	9.4	20499	12.1
MLEZ.Z	1900	TEAK	10	10	40	10	171	37	1.76	1070							
	100/	41.17.1.	-	75	25	10	705	20	770	845	66	٨	1.60	3.0	13.7	20483	12.1
MLE2.2	1986		4	22	20	10	705	20	257	/47	10 1	14	1 08	18 4	0 5	17080	0.0
MLE2.2	1986	2SPR	0	63	22	10	547	30	555	407	0.1	10	1 1/	25.2	7 2	27/07	14 1
MLE2.2	1986	3SUM	5	82	46	ý	40	52	330	1370	7.2	10	1 57	1/ 0	80	26621	16 2
MLE2.2	1986	4FAL	4	70	53	9	68	50	590	975	1.1	10	1.00	19.0	80.7	21685	12 0
MLE2.2	1986	YEAR	17	67	41	9	235	54	570	905	0.0	17	1.24	10.0	0.7	21000	12.7
			-					~	170	000	0 1	0	1 20	/ ~	15 1	21940	17 0
MLE2.2	1987	1WIN	1	70	50	4	380	8	650	800	9.1	y Y	1.20	4.2	15 1	21000	17 0
MLE2.2	1987	YEAR	1	70	50	4	380	8	630	800	9.1	У	1.20	4.2	12.1	21000	12.0
											40.0	~7	4 20	10.0		20777	10 7
MLE2.2	ALL	ALL	42	77	44	14	203	48	668	958	12.0	93	1.29	18.0	9.2	20112	12.3
										4010	0 0 0		0.05		44 5	1075	م /
MWT1.1	1984	4FAL	2	83	45	10	645	188	1028	1940	20.8	55	0.95	8.1	11.5	40/0	2.4
MWT1.1	1984	YEAR	2	83	45	10	645	188	1028	1940	20.8	33	0.95	8.1	11.5	4875	2.4

STATION

MET5.1

MET5.1

MET5.1

MET5.1

MET5.1

MET5.1

CHESAPEA	KE BAY	r estua	RY AND	MAINS	STEM DAT	A MEAN	NS BY S	STATION,	YEAR,	AND S	SEASON	DEI	PTH <= 3	METERS	5	PA	GE 11
STATION MWT1.1 MWT1.1 MWT1.1 MWT1.1 MWT1.1	YEAR 1985 1985 1985 1985 1985	SEAS 1WIN 2SPR 3SUM 4FAL YEAR	TO OBS 1 3 2 3 9	TAL P PPB 90 187 140 70 127	DIS-P 0 PPB 50 52 43 37 44	RT-P 1 PPB 20 10 20 13 14	NO23-N PPB 1300 460 153 374 456	NH34-N PPB 50 732 23 62 275	TKN PPB 800 2703 1030 688 1448	SI PPB 2240 1392 5175 2575 2414	CHL-A PPB 48.3 27.8 19.4 33.0	CHL-A PPB 59 28 31 59	SECCHI METERS 0.40 0.37 0.20 0.50 0.38	TEMP DEG-C 7.7 21.3 25.7 11.7 17.6	D.O. PPM 12.2 9.1 5.3 9.6 8.8	COND UHOS 1825 1586 2681 4701 2894	SALIN PPT 0.6 0.5 1.1 2.3 1.2
MWT1.1	1986	1WIN	1	110	30	10	1750	95	750	3790	11.2	11	0.20	7.2	11.5	1100	0.2
MWT1.1	1986	2SPR	3	83	27	8	868	42	763	3717	5.2	7	0.33	19.4	8.1	1350	0.4
MWT1.1	1986	3SUM	3	112	30	7	65	9	805	3675	23.2	36	0.27	24.1	7.8	2368	1.0
MWT1.1	1986	4FAL	3	92	35	5	455	120	905	3292	17.1	35	0.40	10.0	11.5	4469	2.1
MWT1.1	1986	YEAR	10	97	31	7	592	61	817	3584	14.7	36	0.32	16.8	9.4	2566	1.1
MWT1.1	1987	1WIN	1	115	40	9	1100	470	1150	3550	5.2	5	0.20	1.7	13.1	978	0.2
MWT1.1	1987	YEAR	1	115	40	9	1100	470	1150	3550	5.2	5	0.20	1.7	13.1	978	0.2
MWT1.1	ALL	ALL	22	109	38	10	564	179	1110	2980	21.3	59	0.40	.15.6	9.5	2838	1.2
MWT2.1	1984	4FAL	2	70	43	10	513	60	648	1158	12.2	15	0.75	8.3	11.6	6254	3.2
MWT2.1	1984	YEAR	2	70	43	10	513	60	648	1158	12.2	15	0.75	8.3	11.6	6254	3.2
MWT2.1	1985	3SUM	2	58	45	10	33	200	595	3143	2.3	2	1.50	23.4	6.8	8871	4.7
MWT2.1	1985	4FAL	3	47	33	13	355	212	592	1470	2.3	3	1.70	11.5	9.8	8024	4.2
MWT2.1	1985	YEAR	5	51	38	12	226	207	593	2139	2.3	3	1.62	16.3	8.6	8363	4.4
MWT2.1 MWT2.1 MWT2.1 MWT2.1 MWT2.1	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	1 3 3 10	105 108 100 115 108	35 43 33 35 37	10 8 4 6 6	1300 302 20 342 329	20 41 11 52 33	600 910 650 758 756	2325 1187 2308 1558 1749	9.7 26.6 13.1 10.2 15.9	10 38 19 14 38	0.30 0.37 0.43 0.45 0.41	8.0 19.4 24.0 10.7 17.0	11.1 8.9 8.1 10.6 9.4	283 2909 3612 7542 4247	0.0 1.2 1.7 3.9 2.1
MWT2.1	1987	1WIN	1	95	40	4	820	70	730	1800	10.9	11	0.40	1.7	14.0	5317	2.6
MWT2.1	1987	YEAR	1	95	40	4	820	70	730	1800	10.9	11	0.40	1.7	14.0	5317	2.6
MWT2.1	ALL	ALL	18	87	38	8	348	87	697	1794	12.0	38	0.78	15.0	9.7	5673	2.9
MWT3.1	1984	4FAL	2	65	35	33	375	50	508	350	3.4	5	2.50	11.8	10.2	11928	6.6
MWT3.1	1984	YEAR	2	65	35	33	375	50	508	350	3.4	5	2.50	11.8	10.2	11928	6.6
MWT3.1	1985	3SUM	2	68	38	10	30	20	628	2533	23.1	24	0.80	23.7	7.3	11283	6.2
MWT3.1	1985	4FAL	3	77	36	10	332	27	706	1434	25.9	33	1.00	12.0	10.8	11425	6.3
MWT3.1	1985	YEAR	5	73	37	10	211	24	675	1874	24.8	33	0.92	16.7	9.4	11368	6.3
MWT3.1 MWT3.1 MWT3.1 MWT3.1 MWT3.1	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	1 3 3 10	50 63 77 120 83	20 27 33 35 30	10 8 4 6 7	1000 540 20 317 363	50 41 11 38 32	465 827 700 888 771	1050 1233 2367 1275 1568	2.3 13.8 28.6 14.0 17.2	2 19 39 19 39	0.70 0.80 0.63 1.27 0.88	5.7 19.2 24.5 11.3 17.1	12.1 8.8 7.8 12.0 9.8	695 3919 5522 11582 6376	0.0 1.8 2.8 6.4 3.3
MWT3.1	1987	1WIN	1	50	30	4	880	68	490	1500	4.4	4	2.60	2.1	13.3	8190	4.3
MWT3.1	1987	YEAR	1	50	30	4	880	68	490	1500	4.4	4	2.60	2.1	13.3	8190	4.3
MWT3.1	ALL	ALL	18	77	32	10	351	33	699	1582	17.0	39	1.17	15.5	9.9	8481	4.5
MWT4.1	1984	4FAL	2	235	108	30	903	4655	6750	1250	57.4	98	0.63	9.1	9.1	9088	4.9
MWT4.1	1984	YEAR	2	235	108	30	903	4655	6750	1250	57.4	98	0.63	9.1	9.1	9088	4.9
MWT4.1 MWT4.1 MWT4.1 MWT4.1 MWT4.1	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	1 3 3 3 10	575 338 485 223 372	155 87 125 87 105	40 32 57 13 35	1080 422 764 1282 848	1000 1433 2533 5175 2843	9150 3253 5800 6692 5639	100 1177 625 1293 939	147.2 144.1 57.0 116.1	210 208 94 210	0.25 0.28 0.27 0.70 0.40	7.4 21.3 24.4 13.0 18.4	14.9 8.7 8.1 9.4 9.4	5078 5322 8148 7383 6764	2.5 2.6 4.3 3.8 3.5
MWT4.1	1986	1WIN	1	260	60	20	1000	4900	8500	2500	37.4	37	0.40	7.3	10.3	549	0.0
MWT4.1	1986	2SPR	3	315	67	15	853	3000	5813	1083	70.0	141	0.25	19.1	7.5	4264	2.0
MWT4.1	1986	3SUM	3	288	60	7	1588	1035	3718	733	127.9	168	0.30	24.3	7.0	4668	2.3
MWT4.1	1986	4FAL	3	208	60	10	1048	2300	3913	1400	54.1	95	0.37	11.4	10.2	9013	4.8
MWT4.1	1986	YEAR	10	270	62	12	1147	2390	4991	1215	79.4	168	0.32	17.2	8.5	5439	2.7
MWT4.1	1987	1WIN	1	195	55	8	1250	3200	4350	2150	51.3	51	0.50	2.6	14.1	5810	2.9

C-11

.

•

~

•

CHESAPEA	KE BAY	ESTUA	RY AND	MAINS	STEM DAT	A MEAI	NS BY	STATION,	YEAR,	AND S	SEASON	DEI	PTH <= 3	METERS	;	PA	GE 12
STATION MWT4.1	YEAR 1987	SEAS YEAR	TO OBS 1	TAL P PPB 195	DIS-P O PPB 55	RT-P I PPB 8	NO2 3-N PPB 1250	NH34-N PPB 3200	TKN PPB 4350	SI PPB 2150	CHL-A PPB 51.3	CHL-A PPB 51	SECCHI METERS 0.50	TEMP DEG-C 2.6	D.O. PPM 14.1	COND UHOS 5810	SALIN PPT 2.9
MWT4.1	ALL	ALL	23	308	85	23	1000	2819	5416	1138	89.6	210	0.39	16.4	9.2	6348	3.2
MWT5.1 MWT5.1 MWT5.1	1984 1984 1984	3SUM 4FAL YEAR	7 4 11	117 84 105	68 68	20 28 23	445 498 464	374 578 448	1275 1155 1227	850 850	23.7 14.2 19.0	30 36 36	0.74 1.36 0.96	25.1 13.1 20.7	7.0 9.1 7.8	9247 17016 12072	5.0 9.8 6.7
MWT5.1 MWT5.1 MWT5.1 MWT5.1 MWT5.1	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	3 6 6 4 19	100 135 178 121 140	57 64 73 58 65	20 13 27 18 19	670 518 216 438 430	600 407 418 434 447	1320 1402 1705 1087 1418	833 650 1583 1394 1130	48.0 34.2 23.5 35.9	101 79 41 101	1.33 1.15 0.63 1.18 1.02	3.8 18.4 25.7 14.6 17.6	12.3 10.3 6.9 10.5 9.6	18867 13806 18083 17685 16772	11.0 7.8 10.5 10.3 9.7
MWT5.1	1986	1WIN	4	261	38	11	1240	363	1145	2193	11.6	28	1.08	4.2	12.2	12142	6.8
MWT5.1	1986	2SPR	6	153	46	16	752	132	1668	1088	75.0	262	0.78	19.1	10.9	11367	6.2
MWT5.1	1986	3SUM	5	156	92	29	103	237	1748	1567	90.1	385	0.72	25.1	8.4	16741	9.6
MWT5.1	1986	4FAL	4	119	75	18	500	262	1030	1413	17.8	31	0.80	13.2	10.7	17250	10.0
MWT5.1	1986	YEAR	19	169	64	19	604	234	1460	1518	55.4	385	0.83	16.7	10.4	14311	8.1
MWT5.1	1987	1WIN	1	150	90	28	710	1000	1600	1400	47.9	48	0.80	3.8	13.5	19433	11.4
MWT5.1	1987	YEAR	1	150	90	28	710	1000	1600	1400	47.9	48	0.80	3.8	13.5	19433	11.4
MWT5.1	ALL	ALL	50	144	65	20	511	377	1400	1308	42.0	385	0.93	17.7	9.6	14845	8.5
MWT6.1	1984	4FAL	2	50	40	10	240	100	760	865	5.9	7	2.10	10.4	10.0	19324	11.3
MWT6.1	1984	YEAR	2	50	40	10	240	100	760	865	5.9	7	2.10	10.4	10.0	19324	11.3
MWT6.1 MWT6.1 MWT6.1 MWT6.1 MWT6.1	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	1 3 3 3 10	50 90 123 107 101	50 73 53 59	10 17 17 13 15	820 192 20 360 254	30 37 83 70 60	500 970 1063 1010 963	600 583 1863 1017 1099	16.1 9.0 36.7 22.1	25 9 87 87	1.10 1.00 0.93 1.67 1.19	8.5 21.0 24.7 12.9 18.4	12.0 9.0 5.9 11.8 9.2	12643 13722 18666 17666 16280	7.0 7.7 10.9 10.3 9.4
MWT6.1	1986	2SPR	3	62	30	8	472	17	822	900	18.6	28	1.07	18.9	10.8	11117	6.1
MWT6.1	1986	3SUM	3	102	58	6	20	48	658	1850	12.9	18	0.67	25.3	5.3	16067	9.2
MWT6.1	1986	4FAL	3	90	53	13	198	39	735	1483	16.8	21	1.47	12.6	10.3	18900	11.0
MWT6.1	1986	YEAR	9	84	47	9	230	35	738	1411	16.1	28	1.07	18.9	8.8	15361	8.8
MWT6.1	1987	1WIN	1	70	50	17	470) 36	650	1400	7.4	7	1.80	2.7	13.8	15233	8.7
MWT6.1	1987	YEAR	1	70	50	17	470) 36	650	1400	7.4	7	1.80	2.7	13.8	15233	8.7
MWT6.1	ALL	ALL	22	88	52	12	253	52	838	1219	17.0	87	1.25	17.2	9.3	16133	9.3
MWT7.1	1984	4FAL	1	50	40	10	280) 30	650	600	10.3	10	1.50	8.7	11.5	19450	11.4
MWT7.1	1984	YEAR	1	50	40	10	280) 30	650	600	10.3	10	1.50	8.7	11.5	19450	11.4
MWT7.1	1985	3SUM	2	138	83	15	60) 110	1045	2028	20.9	25	0.90	24.3	6.9	21327	12.6
MWT7.1	1985	4FAL	3	93	67	20	247	7 67	887	1493	40.6	57	1.23	13.8	12.0	20742	12.3
MWT7.1	1985	YEAR	5	111	73	18	172	2 84	950	1707	32.7	57	1.10	18.0	10.0	20976	12.4
MWT7.1	1986	2SPR	3	65	33	8	280	28	677	533	11.5	12	1.23	18.5	9.8	13259	7.4
MWT7.1	1986	3SUM	3	113	75	9	20	0 10	900	1867	23.0	32	0.67	25.7	7.6	18100	10.5
MWT7.1	1986	4FAL	3	98	50	11	238	3 45	725	1417	16.0	20	1.63	12.9	9.4	21444	12.7
MWT7.1	1986	YEAR	9	92	50	9	179	9 28	767	1272	16.8	32	1.18	19.0	9.0	17601	10.2
MWT7.1	1987	1WIN	1	70	50	4	370) 24	600	1100	5.1	5	2.10	3.3	12.5	18967	11.1
MWT7.1	1987	YEAR	1	70	50	4	370) 24	600	1100	5.1	5	2.10	3.3	12.5	18967	11.1
MWT7.1	ALL	ALL	16	94	57	12	19	5 45	807	1355	20.6	57	1.23	17.1	9.7	18857	11.0
MWT8.1	1984	4FAL	2	95	420	437	7:	5 97	747	950) 18.1	30) 1.10	14.2	9.5	20443	12.0
MWT8.1	1984	YEAR	2	95	420	437	7:	5 97	747	950) 18.1	30) 1.10	14.2	9.5	20443	12.0
MWT8.1 MWT8.1 MWT8.1 MWT8.1	1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL	2 3 3 3	80 160 153 93	40 67 103 63	10 37 33 10	250 21 21 21	0 25 3 37 0 23 7 33	825 1280 877 700	450 1150 2410 1260) 46.7 11.8 18.5	105 12 28	1.35 0.77 0.73 1.73	5.6 22.3 25.8 14.0	13.3 10.1 7.7 11.3	18760 16599 20549 20494	10.9 9.5 12.1 12.1

C-12

.

.
CHESAPEA	KE BAY	(ESTU	ARY AND	MAIN	STEM D	ATA ME	ANS BY	STATION,	YEAR,	AND	SEASON	DEI	PTH <= 3	METERS	6	PA	GE 13
STATION MWT8.1	YEAR 1985	SEAS YEAR	TO 08S 11	TAL P PPB 125	DIS-P PPB 71	ORT-P PPB 24	NO23-N PPB 116	NH34-N PPB 30	TKN PPB 929	SI PPB 1396	CHL-A PPB 27.4	CHL-A PPB 105	SECCHI METERS 1.13	TEMP DEG-C 17.9	D.O. PPM 10.4	COND UHOS 19132	SALIN PPT 11.2
MWT8.1 MWT8.1 MWT8.1 MWT8.1	1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL	1 3 3 3	50 73 133 103	47 80 60	10 12 39 14	490 250 20 110	30 19 19 38	430 967 643 603	830 833 2267 1200	3.1 30.5 19.6 15.5	3 44 25 21	2.20 0.87 0.67 1.30	6.0 19.4 25.6 12.6	12.5 10.8 5.8 9.5	16667 14396 19227 21956	9.6 8.1 11.2 13.0
MW18.1 MW18.1 MW18.1	1986 1987 1987	YEAR 1WIN YEAR	10 1 1	98 70 70	62 50 50	20 4 4	350 350	20 16 16	550 550	1400 1400	20.0 6.0 6.0	44 6 6	1.70 1.70 1.70	4.4	9.1 14.6 14.6	20093 20093	10.7 11.8 11.8
MWT8.1	ALL	ALL	24	109	97	71	139	36	803	1350	22.1	105	1.12	16.9	9.9	19011	11.1
MWT8.2 MWT8.2	1984 1984	4FAL YEAR	3 3	80 80	43 43	12 12	57 57	90 90	683 683	775 775	8.9 8.9	9 9	1.02 1.02	13.8 13.8	9.3 9.3	21634 21634	12.8 12.8
MWT8.2 MWT8.2 MWT8.2 MWT8.2 MWT8.2	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	1 3 3 10	65 117 138 88 110	55 48 85 70 67	35 10 17 13 16	360 20 23 182 104	25 22 53 28 34	750 1063 1003 687 901	575 1100 2513 1347 1546	27.4 13.2 20.2 21.1	45 14 24 45	1.50 1.00 0.57 1.00 0.92	2.5 23.3 25.6 13.8 19.1	12.2 11.1 6.6 14.1 10.7	18350 17471 22007 21201 20039	10.7 10.1 13.1 12.6 11.8
MWT8.2 MWT8.2 MWT8.2 MWT8.2 MWT8.2 MWT8.2	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	1 3 3 3 10	90 82 145 139 119	45 35 68 57 53	10 8 19 14 13	565 227 20 103 162	25 20 16 38 25	515 897 842 869 834	1125 958 2208 992 1360	2.4 15.6 16.7 19.5 15.8	2 21 31 25 31	1.40 0.73 0.57 1.20 0.89	7.8 19.5 25.7 12.1 18.0	11.6 8.9 5.9 9.8 8.5	16667 15096 20333 22860 19154	9.6 8.6 12.0 13.6 11.2
MWT8.2 MWT8.2	1987 1987	1WIN YEAR	1 1	90 90	60 60	4 4	415 415	52 52	590 590	1150 1150	6.6 6.6	7 7	1.60 1.60	4.7 4.7	14.7 14.7	22247 22247	13.2 13.2
MWT8.2	ALL	ALL	24	109	58	14	135	38	833	1381	16.4	45	0.95	17.3	9.8	19961	11.7
MWT8.3 MWT8.3	1984 1984	4FAL YEAR	3 3	68 68	40 40	12 12	100 100	97 97	642 642	790 790	8.2 8.2	10 10	1.09 1.09	13.6 13.6	9.0 9.0	22027 22027	13.1 13.1
MWT8.3 MWT8.3 MWT8.3 MWT8.3 MWT8.3 MWT8.3	1985 1985 1985 1985 1985	1WIN 2SPR 3SUM 4FAL YEAR	1 3 3 10	55 95 120 128 109	45 45 72 55 56	15 13 13 12 13	470 32 23 182 118	50 25 30 35 32	665 1025 897 1108 976	630 892 2263 1327 1408	20.5 13.3 36.5 24.7	34 16 87 87	1.40 0.70 0.63 0.90 0.81	1.7 22.6 25.1 13.5 18.5	12.3 10.5 6.9 11.2 9.8	18233 17571 22396 21633 20303	10.6 10.2 13.3 12.8 12.0
MWT8.3 MWT8.3 MWT8.3 MWT8.3 MWT8.3	1986 1986 1986 1986 1986	1WIN 2SPR 3SUM 4FAL YEAR	1 3 3 3 10	85 68 140 103 102	40 32 57 60 49	10 8 13 10 10	630 175 20 117 157	50 19 39 21 29	500 788 943 735 790	900 800 2133 867 1230	3.4 14.0 12.2 14.0 12.4	3 17 19 22 22	1.30 0.77 0.57 1.03 0.84	7.6 19.2 25.1 12.2 17.7	11.6 7.9 5.9 10.1 8.3	18933 15282 20957 23092 19692	11.0 8.7 12.4 13.8 11.6
MWT8.3 MWT8.3	1987 1987	1WIN YEAR	1 1	110 110	60 60	5 5	410 410	20 20	700 700	1100 1100	5.7 5.7	6 6	2.10 2.10	3.2 3.2	15.6 15.6	20800 20800	12.3 12.3
MWT8.3	ALL	ALL	24	101	52	11	144	38	845	1263	16.0	87	0.91	16.9	9.3	20285	11.9

CHESAF	CHESAPEAKE BAY MAINSTEM DATA MEANS BY SEGME				MENT AND	DEPTH <= 3 MAX			<= 3 M	3 METERS PAGE 1		GE 1				
SEG YF	RMO C	TOT DBS	AL P D PPB	IS-P O PPB	PPB	NO23-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A (PPB	MAX CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
1 84 1 84 1 84 1 84 1 85 1 85 1 85 1 85 1 85 1 85 1 85 1 85	407 408 409 410 411 412 503 504 505 506 507 508 509 510 511 5512 501	1 1 2 1 1 2 2 2 2 2 2 2 2 2 1 1 0	53 32 34 37 36 39 65 33 56 62 52 64 33 46 41 32	12 12 13 15 15 22 33 18 14 37 26 36 8 24 22 15	7 9 7 10 7 14 11 5 11 16 4 7 3 19 15 10	1430 1480 1113 1200 1520 1195 1045 845 845 845 845 933 581 592 1053 940 1320	40 20 20 48 20 65 92 46 111 157 13 27 23 34 68 44	200 213 262 386 260 353 329 203 304	1665 1520 1013 434 636 2440 1845 1515 375 905 710 645 450 1385 470 2650	13.5 1.0 11.0 8.5 7.0 1.5 16.0 5.8 12.5 9.8 16.1 7.3 8.2 4.3 3.7 0.8	14 1 13 7 2 31 7 19 13 24 7 9 4 4 1	0.60 0.90 1.00 1.50 1.20 0.35 0.70 0.80 1.15 1.10 1.10 1.10 0.85 1.00 0.90	27.4 27.8 23.5 18.1 15.7 2.8 6.8 12.7 19.2 23.4 26.9 26.7 24.1 17.9 13.6 3.6	7.2 6.1 6.7 7.5 8.0 13.3 10.8 7.5 5.9 8.0 6.4 7.1 7.5 9.5 12.7	200 300 317 400 400 100 129 167 333 313 300 363 243 304 137	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	502 503 504 605 606 607 608 609 610 611 612 701 702 703 704 705 706 707	02222222111112222	47 45 34 43 33 33 37 40 37 29 29 34 82 40 38 35	21 12 6 9 10 9 12 9 17 12 12 14 13 18 9 12 9	8 9 5 4 3 4 4 6 11 7 11 8 8 9 4 4 5	1490 1280 1140 691 580 950 1025 990 1060 1230 1700 2140 1380 1105 876 1085 920	69 34 30 76 31 14 3 22 69 50 72 37 40 52 43 52 43 52 61	400 475 415 400 400 260 260 260 260 260 260 395 410 360	1855 1970 645 1225 570 645 710 2190 2580 2560 1070 1520 2160 690 990 1300	6.0 12.5 13.0 7.2 11.8 10.8 11.4 2.1 0.6 0.7 1.1 4.3 6.7 22.4 11.5 9.7	10 19 15 9 15 14 12 2 1 1 1 4 7 37 18 12	0.45 0.55 1.05 0.70 1.00 1.00 1.10 1.00 0.80 1.40 2.60 0.60 0.45 0.90 0.80 1.10	5.8 12.5 20.0 24.6 27.7 25.4 22.3 19.0 6.2 5.4 2.2 3.0 6.9 10.3 16.5 23.4 27.4	12.0 10.5 8.6 6.9 7.2 7.8 8.6 11.9 11.6 13.0 13.4 12.4 11.4 10.3 7.4 6.7	1005 90 241 294 273 320 337 182 179 227 293 182 166 223 278 309	0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 8 8 2 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8	407 408 409 410 411 503 504 505 506 507 508 507 508 507 508 507 510 511 512 601 402	424422434444442210	90 39 46 44 36 59 104 47 59 67 68 92 65 49 30 71 56	26 18 14 18 24 49 18 14 28 29 39 32 24 14 41 22	13 8 11 11 14 10 7 8 14 12 23 17 16 18 16 12	1363 948 607 718 999 1225 1010 899 773 676 468 220 263 628 900 1235 1440	67 59 61 75 102 100 59 54 64 86 49 47 48 71 107 64 94	308 216 224 334 372 342 327 262 276	2058 1458 1224 638 530 1725 1629 1773 363 726 1050 859 914 811 955 2513 2650	11.0 10.5 9.8 12.7 10.3 4.5 15.4 9.7 14.6 7.2 10.2 12.0 6.0 6.6 3.6 0.8 0.7	27 14 12 17 13 6 25 18 19 14 13 18 9 14 4 1 1	0.28 0.65 0.71 0.93 1.10 0.75 0.35 0.40 0.45 0.45 0.460 0.48 0.68 0.90 0.55 0.50	26.1 26.5 22.4 17.2 13.9 4.5 7.2 10.8 22.7 26.4 25.8 23.8 17.3 13.6 4.8 -0.0	7.2 7.2 6.9 8.0 9.5 11.9 12.9 10.4 8.2 6.9 6.4 6.7 6.8 8.5 9.1 12.1 13.1	150 1750 5781 8667 6913 2617 588 1211 1665 1796 3775 4635 10046 6514 8029 1894 1678	0.0 0.6 2.9 4.6 3.6 1.2 0.5 0.5 0.5 0.7 1.8 2.3 5.5 3.3 4.2 0.8 0.6
2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	603 604 605 606 607 608 609 610 611 612 701 702 703 704 7703 7704 7705 7706 7707	° 4 4 4 4 4 4 4 2 2 2 2 2 4 4 4 4	70 66 67 62 61 60 62 54 53 49 36 61 74 70 51 43	19 14 20 24 23 22 16 18 18 17 10 9 14 11 13 20	9 8 14 13 15 11 11 15 4 5 9 5 9 16	1403 1273 940 729 378 585 372 596 1020 1323 1670 1643 1135 1099 854 774 513	58 47 31 66 35 38 17 53 76 62 97 33 19 57 40 58 106	625 504 531 635 475 535 390 475 338 600 499 646 436 500	1811 1911 218 1240 916 738 504 610 1165 2545 2545 2545 2545 2545 2545 2046 609 644 1213	3.0 5.5 20.3 9.4 9.8 11.2 18.5 10.2 4.6 0.7 1.4 4.3 36.4 8.6 21.2 12.0 6.6	5 13 26 20 15 19 41 18 5 62 11 29 18 9	0.35 0.45 0.45 0.58 0.55 0.65 0.40 0.70 1.05 0.85 0.35 0.48 0.35 0.40 0.70 1.05 0.85 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.85 0.63 0.93	6.4 11.3 19.9 24.2 26.9 24.6 21.6 17.7 8.2 5.2 2.1 1.6 7.2 10.6 16.0 24.5 26.9	11.8 10.6 8.8 7.6 7.1 7.9 8.1 8.4 10.7 12.3 12.9 13.3 12.9 13.3 12.3 11.7 9.9 7.1 6.7	997 714 1146 322 3051 3058 4820 6607 2270 516 1397 6151 7166 464 1700 1593 3140	0.3 0.2 0.4 0.0 1.4 1.4 2.4 3.5 1.0 0.1 3.1 3.7 0.0 0.6 0.6 1.5

۵

.

-

:

CHESAPEAKE	BAY	MAINST	EM DAT	MEANS	BY SE	GMENT AND	MONT	H		MAY	DEPTH	<= 3 N	HETERS	PA	GE 2
SEG YRMO	OBS	FOTAL P PPB	DIS-P PPB	ORT-P PPB	NO23-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
3 8407 3 8408	10 6	57 43	19 16	11 11	865 414	49 86	288 289	1570 1520	9.8 13.7	19 20	0.80	25.2	7.2 6.8	4492 11289	2.2
3 8409 3 8410	10 10	50 41	21 18	10 10	173 261	102 80	337 321	1293 985	18.1	58 29	1.20	18.0	8.0	19492	10.7
3 8411	5	29	20	14	373	147	378	831	7.4	12	1.58	14.5	8.8	20207	11.9
3 8412	5	32 30	16 12	8	717 546	120 79	350 388	788 972	8.4	12	1.92	5.4 -0.6	14.1	14892	11.1
3 8502	4	26	10	7	417	41	216	620	12.3	19	1.30	-0.3	14.9	24375	14.7
3 8503	10	99	35	6	862	49 78	311	916	10.8	22	1.39	7.4	12.1	12460	7.0 5.8
3 8504	10	47 56	20	46	332	40	240	181	37.7	94	0.96	17.6	8.8	13962	7.9
3 8506	10	46	22	11	285	82		849	7.7	21	1.18	21.7	6.1	14670	8.3
3 8507	10	59 80	17 70	8 15	65 94	40 49		1574	24.2	112	0.85	25.4	6.9 6.4	17580	10.2
3 8509	10	57	26	"13	87	42		1101	9.6	27	1.00	24.6	7.1	23053	13.8
3 8510	10	43	23	12	197	72		800	13.7	37	1.38	18.5	8.9	22077	13.1
3 8511	5	49	28 25	17		127		1583	2.8	4	1.30	7.6	11.1	14534	8.2
3 8601	5	33	13	7	828	74		1641	3.8	7	1.28	1.7	13.1	13760	7.8
3-8602	5	40	17	7	1031	114		1488	6.0 5 4	8	1.00	0.0	13.0	11212	6.2 5.8
3 8604	10	46	10	7	1068	67		1277	10.5	22	0.77	11.4	10.5	7507	3.9
3 8605	10	37	8	4	450	17	(00	215	27.8	68	0.89	18.5	9.6	12578	7.0
3 8606 3 8607	10	41 59	15 22	9 10	278	73 29	831	1493	23.9	67	1.16	25.8	8.4	16314	9.4
3 8608	10	69	26	15	79	30	740	1342	20.7	54	0.79	25.2	7.9	16844	9.7
3 8609	10	51	21	15	121	23	602	1198	12.9	28	0.95	22.3	7.7	19613	11.5
3 8611	5	41	26	18	396	148	600	882	5.8	9	1.84	10.5	10.2	19542	11.5
3 8612	5	44	15	9	732	112	407	1587	4.4	7	1.14	6.9	11.6	12829	7.2
3 8701 3 8702	5	46	18 10	11	844 774	145 48	434 516	1484 924	5.9	28	1.58	2.2	11.4	19047	9.0 11.1
3 8703	8	48	10	4	948	28	760	886	27.4	73	1.04	6.8	12.7	15682	9.0
3 8704	10	47	14	9	940	112	567	1353	6.4	14	0.70	11.1	10.3	6861 15180	3.5
3 8705	10	20 45	10	د 8	256	39	663	700	20.0	13	1.19	23.5	6.9	14531	8.2
3 8707	10	67	24	13	74	59	576	1628	22.5	52	1.18	26.7	8.0	16016	9.2
4 8407	20	36	12	7	165	35	278	1226	15.0	31	1.44	25.2	8.1	11794	6.5
4 8408	14	49	19	7	141	55	306	1503	22.7	135	1.21	26.2	8.5	14967	8.5
4 8410	20	26	13	8	40 89	50	389	476	12.1	30	2.22	18.6	8.7	23998	14.4
4 8411	4	20	13	7	121	58	376	522	10.0	14	2.25	16.9	9.1	25200	15.2
4 8412 4 8501	10	19 18	12	7	187	51 31	306 418	533 454	9.4 10.8	15	2.58	0.8	12.2	24420	14.7
4 8502	8	16	10	7	274	40	215	439	10.3	15	1.80	-0.0	14.7	25492	15.4
4 8503	20	66	60	4	504	17	223	355	6.5	13	2.53	7.2	11.8	20915	12.3
4 8504	20	26	16	6	212	31	275	76	12.8	29	1.68	17.5	8.7	21451	12.7
4 8506	20	43	21	8	80	18		533	8.5	21	1.67	22.0	8.4	21808	12.9
4 8507	20	53	22	6 14	6 33	15 31		1025	10.5	142	1.52	25.0	6.8	25245	15.2
4 8509	20	45	22	7	33	39		679	5.5	12	1.53	25.0	7.3	27385	16.7
4 8510	20	26	11	6	80	50		418	6.6	18	1.63	19.2	8.1	28320	17.3
4 8512	10	33	22	12	501	127		956	3.0	4	2.04	8.1	10.7	21363	12.7
4 8601	10	21	6	3	481	11		958	7.8	12	1.87	2.8	12.2	21745	12.9
4 8602	10	25	11	5	585 748	39 70		720	8.3	11 12	1.69	0.9	12.8	19777	11.6
4 8604	20	17	5	3	771	16		307	14.4	24	1.45	11.7	11.3	14190	8.0
4 8605	20	12	5	4	384	31	777	119	4.6	8	2.85	18.4	9.1	18727	10.9
4 8606 4 8607	20	29 46	10 17	· 5 · 9	713	49 18	732	1222	22.4	157	1.34	26.9	7.6	21707	12.9
4 8608	20	36	14	7	20	41	501	1081	9.4	18	1.73	25.5	7.4	23412	14.0
4 8609	20	31	12	5	39 ∡ 1	21	447	850 307	8.9	15 24	1.97	22.5	(.9 8 2	25203	15.2
4 8610	10	33	18	7	119	76	491	621	11.0	19	2.59	11.6	10.8	28778	17.6
4 8612	10	31	13	4	425	80	369	902	6.2	.9	2.14	7.7	11.1	21967	13.0
4 8701 4 8702	10 10	27	10 0	। 4) र	439	54 17	551 387	957 637	7.6 8.5	11	2.20	4.7	13.0	23427	14.0
4 8703	14	20	8	; 4	539	10	483	442	7.9	15	2.33	6.5	12.9	22471	13.4

CHESAPEAKE	BAY	MAINST	EM DATA	MEANS	S BY SE	GMENT AND	MONTH			MAX	DEPTH	<= 3 M	IETERS	PA	GE 3
SEG YRMO 4 8704 4 8705 4 8706 4 8707	0BS 20 20 20 20 20	TOTAL P PPB 30 24 36 41	DIS-P PPB 9 9 14 16	ORT-P PPB 3 4 6 7	NO23-N PPB 576 351 33 10	NH34-N PPB 50 26 29 50	TKN PPB 586 542 647 442	SI PPB 493 359 247 858	CHL-A PPB 19.7 14.8 16.4 9.4	CHL - A PPB 36 34 34 18	SECCHI METERS 1.51 2.10 1.39 1.70	TEMP DEG-C 10.4 15.8 23.3 26.5	D.O. PPM 11.8 10.6 9.8 7.2	COND UHOS 17508 19654 20896 22782	SALIN PPT 10.1 11.5 12.3 13.6
4 8708 4 8707 5 8407 5 8409 5 8409 5 8409 5 8410 5 8412 5 8501 5 8502 5 8503 5 8504 5 8505 5 8505 5 8506 5 8507 5 8507 5 8508 5 8507 5 8511 5 8512 5 8601 5 8602 5 8603 5 8604 5 8605 5 8606 5 8607 5 8608 5 8608 5 8608 5 8608 5 8609 5 8608 5 8609 5 8608 5 8607 5 8608 5 8608 5 8608 5 8608 5 8608 5 8607 5 8608 5 8607 5 8608 5 8608	20 20 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	36 41 33 32 28 21 20 18 15 11 60 15 36 60 15 35 36 6 22 20 21 21 13 12 22 40 27 19	14 16 12 13 15 12 12 12 12 12 12 12 10 29 10 16 24 15 16 29 11 31 7 13 10 6 7 7 7 7	67 7777777743645545594632344645	10 40 40 40 40 225 250 233 167 26 6 9 9 8 32 111 225 313 437 597 552 350 78 755 350 78 755 350 78	29 50 37 48 29 30 32 40 24 40 7 15 36 18 5 26 30 46 46 102 5 32 43 28 17 20 25 45 31 46	442 423 358 207 411 314 270 211 215 349 235 699 585 448 413 303	2457 858 760 1366 787 202 295 289 240 241 68 24 54 272 638 411 526 168 362 458 513 515 472 912 496 259 912	11.3 8.0 9.5 8.0 9.5 7.0 8.5 13.0 13.8 23.8 4.4 4.2 4.0 5.9 6.4 12.7 8.8 5.0 5.9 6.4 10.3 8.9 5.0 6.4 10.3 8.9 5.0 6.4 10.3 8.9 5.0 6.4 10.3 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	14 17 11 10 14 7 10 14 7 10 14 35 16 10 7 4 7 9 6 7 14 7 9 22 5 11 19 15 7 10 10 10 10 10 14 10 14 10 10 14 10 10 10 14 10 10 10 10 10 10 10 10 10 10	1.70 1.78 1.78 2.10 2.30 2.67 1.80 2.07 2.32 2.12 2.78 1.97 1.65 2.03 1.65 1.65 2.30 1.97 2.30 1.97 2.30 1.97 2.20 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.28 3.13 1.80 1.92 2.42 2.28 3.13 1.95 2.42 2.28 3.13 1.95 2.42 2.42 2.28 3.13 1.95 2.42 2.42 2.48 3.13 1.95 2.42 2.48 3.13 1.95 2.42 2.48 3.13 1.95 2.42 2.48 3.13 1.95 2.42 2.48 3.13 1.95 2.42 2.48 3.13 1.80 1.92 2.42 2.48 3.13 1.95 2.42 2.48 3.13 1.95 2.42 2.48 3.13 1.80 1.92 2.42 2.43 1.95 2.42 2.48 3.13 1.80 1.92 2.42 2.43 1.95 2.42 2.43 1.80 1.95 2.42 2.43 1.80 1.95 2.42 2.43 1.80 1.95 2.42 2.43 1.80 1.95 2.42 2.43 1.80 1.95 2.42 2.43 1.80 1.95 2.42 2.43 1.80 1.95 2.42 2.43 2.45	26.5 25.0 25.6 23.3 18.7 17.8 7.3 4.1 0.1 8.1 13.3 26.3 26.3 25.5 20.0 15.1 9.7 3.9 2.1 5.1 11.8 17.7 23.4 27.5 26.3 22.5 20.0 15.1 11.8 17.7 23.4 27.5 26.3 22.5 20.0 25.5 20.5 20	7.2 7.3 7.3 7.4 8.9 9.1 13.2 13.9 11.4 13.5 8.9 7.7 7.8 9.8 10.0 12.0 8.2 12.4 13.2 13.9 11.4 13.5 8.9 7.7 7.8 9.8 10.0 12.0 8.2 12.8 12.8 12.8 12.8 12.8 12.8 12.8	22782 22782 22782 22782 25156 25322 26911 27058 26000 27356 23683 23115 23706 24711 26492 27789 28151 31210 27839 26608 26178 22758 20311 19289 22628 24769 24243 27792 227925 28842	13.6 10.0 10.3 15.2 15.3 16.4 15.7 16.7 16.7 14.2 13.8 14.2 14.9 16.9 17.2 19.3 17.0 16.2 15.9 13.6 12.0 14.6 12.0 14.2 15.3 14.4 16.5 16.7 16.7 16.7 16.7 14.2 15.3 14.2 15.3 14.2 15.3 14.2 15.3 14.2 15.3 14.2 15.3 16.5 15.7 16.7 16.7 16.7 16.7 16.7 16.5 16.5 17.2 19.3 17.0 16.5 15.7 16.7 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.7 17.0 16.7 17.0 16.7 17.0 16.7 17.0 17.7 1
5 8611 5 8612 5 8701 5 8702 5 8703 5 8704 5 8705 5 8706 5 8707	3 3 3 6 5 6 5 6	26 27 28 25 16 21 22 33 35	16 12 10 8 10 8 10 8 13 13	3 3 3 4 3 7 4 6 6	53 214 259 333 427 255 151 8 10	71 68 13 12 15 17 13 16 39	490 555 375 358 406 665 771 747 426	295 517 590 468 336 43 75 195 253	8.5 5.2 13.3 6.3 6.0 31.9 35.1 17.9 7.3	10 7 17 8 8 44 44 34 12	2.57 2.90 1.77 1.73 2.97 1.27 1.60 1.10 2.03	12.3 8.4 4.9 2.4 6.5 10.4 17.3 23.9 26.6	9.9 10.2 12.7 12.4 12.8 12.0 12.0 9.8 8.0	29183 26817 26478 26222 23458 23764 21552 22538 25847	17.9 16.3 16.1 15.9 14.0 14.2 12.8 13.4 15.7

.

CHESAPEAKE BAY MAINSTEM DATA MEANS BY SEGMENT AND SI								EASON DEPTH <= 3 METERS MAX TKN SI CHL-A CHL-A SECCHI TEMP D.O. COND							
SEG YR SEAS	TC OBS	DTAL P PPB	DIS-P PPB	ORT-P PPB	NO23-N PPB	NH34-N PPB	TKN PPB	SI PPB	CHL-A PPB	CHL-A PPB	SECCHI METERS	TEMP DEG-C	D.O. PPM	COND UHOS	SALIN PPT
1 84 3SUM 1 84 4FAL 1 85 1WIN 1 85 2SPR 1 85 3SUM 1 85 4FAL 1 86 1WIN 1 86 2SPR 1 86 3SUM 1 86 4FAL 1 87 1WIN 1 87 2SPR 1 87 3SUM	4 4 2 6 4 2 6 4 3 6 2	38 37 65 50 41 47 41 33 38 31 53 35	12 17 33 23 23 21 21 21 9 10 12 13 13 9	8 10 11 10 5 16 8 6 4 7 9 5 5 5	1284 1279 1045 852 702 1091 1490 1037 852 1068 1740 1022 920	25 45 92 105 21 45 69 46 16 41 50 49 61	234 346 329 237 400 435 373 260 432 360	1303 986 1845 932 602 1473 1855 1280 617 1548 1717 1280 1300	9.1 6.4 16.0 9.4 10.5 2.9 10.5 9.9 6.4 2.0 13.5 9.7	14 13 31 19 24 4 19 15 12 4 37 12	0.88 1.23 0.35 0.88 1.10 0.90 0.45 0.77 1.08 1.00 1.53 0.72 1.10	25.5 13.6 6.8 18.4 25.9 13.3 5.8 19.0 25.1 12.4 4.7 16.7 27.4	6.7 9.1 13.3 8.1 7.2 9.3 12.0 8.7 7.1 10.2 12.8 9.7 6.7	283 325 100 210 325 232 1005 190 296 259 221 222 309	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 84 3SUM 2 84 4FAL 2 85 1WIN 2 85 2SPR 2 85 3SUM 2 85 4FAL 2 86 1WIN 2 86 2SPR 2 86 3SUM 2 86 4FAL 2 87 1WIN 2 87 2SPR 2 87 3SUM	10 8 4 11 12 8 5 12 12 8 6 12 4	62 46 104 59 75 49 67 66 61 57 49 65 43	20 19 49 20 33 26 19 15 23 17 12 12 20	10 12 10 17 17 17 10 12 13 12 8 8 8 16	977 915 1010 772 317 848 1410 981 445 884 1483 909 513	63 88 59 69 48 78 65 48 30 61 50 52 106	256 345 327 267 625 557 469 471 527 500	1604 883 1629 880 941 1272 1979 1123 719 1233 1822 1099 1213	10.4 10.0 15.4 10.6 9.3 4.4 2.5 11.7 13.1 6.4 14.0 13.9 6.6	27 17 25 19 18 14 5 26 41 18 62 29 9	0.53 0.93 0.35 0.58 0.79 0.38 0.41 0.61 0.63 0.87 0.48 0.93	24.7 13.2 7.2 18.1 25.3 13.2 5.1 18.5 24.4 12.2 4.1 17.0 26.9	7.1 9.3 12.9 8.3 6.6 9.5 12.1 9.0 7.7 10.0 12.7 9.6 6.7	2723 6716 588 1589 6152 5738 1133 727 3643 4000 5227 1252 3140	1.3 3.5 0.2 2.9 0.4 0.2 1.7 2.0 2.6 0.4 1.5
3 84 3SUM 3 84 4FAL 3 85 1WIN 3 85 2SPR 3 85 3SUM 3 85 4FAL 3 86 1WIN 3 86 2SPR 3 86 3SUM 3 86 4FAL 3 87 1WIN 3 87 2SPR 3 87 3SUM	26 20 15 28 30 20 20 30 30 20 18 30 10	51 35 75 50 65 44 47 41 60 49 46 43 67	19 18 27 23 28 25 17 11 23 23 12 13 24	11 10 7 12 14 7 13 15 7 6 13	495 403 722 426 82 380 942 599 87 381 871 567 74	78 107 49 57 44 102 99 52 27 80 66 68 59	307 342 291 276 688 724 459 602 617 576	1452 898 841 623 1401 955 1443 812 1344 1029 1063 938 1628	13.9 11.0 11.2 21.3 15.8 9.7 5.2 15.9 19.2 7.2 18.7 11.7 22.5	58 29 94 112 37 9 68 67 16 73 34 52	0.99 1.66 1.39 1.07 0.91 1.29 0.88 0.93 1.46 1.33 1.05 1.18	24.4 13.9 4.8 17.2 25.4 14.8 3.3 17.9 24.7 13.6 4.8 16.5 26.7	6.9 9.2 13.4 8.9 6.8 9.6 12.3 9.2 8.0 9.25 8.8 8.0	11381 18521 16078 13245 20156 20230 11429 10765 17590 18428 16900 12194 16016	6.4 10.8 9.3 7.5 11.9 11.9 6.4 5.9 10.2 10.8 9.7 6.8 9.2
4 84 3SUM 4 84 4FAL 4 85 1WIN 4 85 2SPR 4 85 3SUM 4 85 4FAL 4 86 1WIN 4 86 2SPR 4 86 3SUM 4 86 4FAL 4 87 1WIN 4 87 2SPR 4 87 3SUM	54 34 60 60 40 60 60 39 34 60 20	39 23 48 36 55 28 26 19 38 34 24 30 41	16 13 42 20 22 14 9 7 14 15 9 11 16	7 7 5 6 9 8 4 4 7 5 4 4 7	114 121 235 24 203 641 423 22 166 487 320 10	56 51 25 22 29 74 52 32 27 52 25 35 50	286 363 245 254 777 557 386 416 592 442	1151 498 388 232 929 519 850 368 1051 579 645 366 858	15.7 11.0 7.9 14.4 11.1 5.8 7.2 9.2 13.6 8.8 8.0 17.0 9.4	135 30 15 33 142 18 12 24 157 24 15 36 18	1.51 2.33 2.29 1.80 1.42 1.80 1.63 2.00 1.74 2.29 2.17 1.67 1.70	24.7 14.9 4.7 17.2 25.6 15.4 3.6 17.8 25.0 14.5 4.7 16.5 26.5	7.9 9.8 13.2 10.3 7.1 9.2 12.2 9.4 7.6 9.6 12.5 10.8 7.2	16861 24264 22492 20860 25258 26331 19030 17789 23441 25837 22988 19353 22782	9.8 14.6 13.4 12.3 15.2 16.0 11.1 10.3 14.0 15.6 13.7 11.3 13.6
5 84 3SUM 5 84 4FAL 5 85 1WIN 5 85 2SPR 5 85 3SUM 5 85 4FAL 5 86 1WIN 5 86 2SPR 5 86 3SUM 5 86 4FAL 5 86 4FAL 5 87 1WIN 5 87 2SPR 5 87 3SUM	16 12 18 18 12 12 12 17 18 12 12 12 17 6	31 20 37 24 39 28 21 15 29 29 21 26 35	14 12 20 16 20 17 10 6 11 14 8 11 13	7 7 5 4 5 6 4 3 5 4 3 5 6	40 49 236 142 8 100 486 326 10 85 362 137 10	37 33 19 23 20 60 31 22 34 58 14 15 39	327 354 228 311 699 461 413 386 725 426	948 247 154 117 525 289 493 146 569 458 433 106 253	9.3 8.6 12.1 12.6 4.9 5.1 6.2 8.7 8.1 6.6 7.9 27.9 7.3	17 14 24 35 9 14 9 22 19 10 17 44	1.89 2.27 2.23 2.29 1.79 1.78 2.08 2.42 2.42 2.42 2.42 2.68 2.36 1.35 2.03	24.6 15.6 5.1 17.9 25.9 16.2 4.0 17.7 25.5 14.9 5.1 17.2 26.6	7.4 10.0 12.8 10.1 7.2 8.9 12.4 9.5 7.5 9.0 12.7 11.2 8.0	20233 26153 25181 23844 27444 29217 22390 22229 26520 28421 24904 22680 25847	11.9 15.9 15.2 14.3 16.7 18.0 13.3 13.2 16.1 17.4 15.0 13.5 15.7

-

:

CHLOROPHYLL-A (PPB)

TOTAL PHOSPHORUS (PPB)

1

INORGANIC NITROGEN (PPB)

.

TOTAL KJELDAHL NITROGEN (PPB)

DISSOLVED SILICA AS SI (PPB)

F-7

SECCHI DEPTH (METERS)

G-1		
	FACTORS	

GROWTH REGULATION FACTORS LIMITING FACTOR FREQUENCIES

			CHL-A	SECCHI	TEMP						RELATIVE				
SEG	YRMO	OBS	PPB	METERS	DEG-C	Р	N	SI	P,N,SI	LIGHT	PRODUCT.	Р	N	SI	OTHER
1	8503	2	16.0	0.35	6.8	0.814	0.978	0.974	0.814	0.045	0.50	0.000	0.000	0.000	1.000
1	8504	2	5.8	0.70	12.7	0.641	0.972	0.960	0.641	0.100	0.30	1.000	0.000	0.000	0.000
1	8505	2	12.5	0.80	19.2	0.793	0.974	0.873	0.793	0.140	1.18	0.000	0.000	0.000	1.000
1	8506	2	9.8	1.15	23.4	0.847	0.976	0.946	0.847	0.210	1.91	0.000	0.000	0.000	1.000
1	8507	2	16.1	1.10	26.9	0.556	0.972	0.933	0.556	0.198	2.17	1.000	0.000	0.000	0.000
1	8508	2	7.3	1.10	26.7	0.734	0.960	0.928	0.734	0.180	1.31	0.000	0.000	0.000	1.000
1	8509	2	8.2	1.10	24.1	0.530	0.961	0.890	0.530	0.154	0.79	1.000	0.000	0.000	0.000
1	8510	1	4.3	1.10	17.2	0.857	0.980	0.970	0.857	0.126	0.41	0.000	0.000	0.000	1.000
1	8511	1	3.7	1.00	13.6	0.857	0.976	0.904	0.857	0.086	0.21	0.000	0.000	0.000	1.000
1	8512	1	0.8	0.90	3.6	0.800	0.982	0.981	0.800	0.061	0.02	0.000	0.000	0.000	1.000
1	8604	2	6.0	0.55	12.5	0.727	0.981	0.975	0.727	0.079	0.29	0.500	0.000	0.000	0.500
1	8605	2	12 5	1.05	20.0	0.626	0.978	0.832	0.626	0.183	1.14	0.500	0.000	0.000	0.500
1	8606	2	13 0	0 70	24.6	0.606	0.967	0.930	0.606	0.129	1.23	1.000	0.000	0.000	0.000
1	8607	1	5 2	1 20	27 1	0 444	0 959	0.886	0.444	0.215	0.69	1.000	0.000	0.000	0.000
1	8608	2	11 8	1 00	25 4	0 556	0 975	0.927	0.556	0.164	1.31	1.000	0.000	0.000	0.000
1	8400	2	10.8	1 10	22.7	0.575	0 976	0 926	0.575	0.154	1.00	0.500	0.000	0.000	0.500
1	9410	2	11 4	1 10	10 0	0.575	0.976	0 911	0 676	0.126	0.92	0.500	0.000	0.000	0.500
4	0010	4	2 1	1 00	6.2	0.815	0.078	0.078	0 815	0.086	0.08	0.000	0.000	0.000	1.000
4	0011		2.1 0 4	0.90	5 /	0.0777	0 081	0 081	0 737	0.054	0.01	0.000	0.000	0.000	1.000
	0012		0.0	1.00	2.4	0.915	0.901	0.001	0.815	0 106	0.03	0.000	0.000	0.000	1.000
	0701	1	0.7	1.40	7.0	0.013	0.900	0.055	0.762	0 235	0 00	0 000	0.000	0.000	1.000
1	8702	1	1.1	2.00	10.7	0.702	0.7070	0.77	0.783	0 064	0.23	0 000	0.000	0.000	1.000
1	8704	2	0.(0.45	10.5	0.705	0.777	0.07/	0.705	0.158	1 50	1 000	0 000	0 000	0.000
1	8705	2	22.4	0.90	10.0	0.500	0.973	0.924	0.580	0.1/7	1 1/	1 000	0,000	0 000	0 000
1	8706	2	11.5	0.80	23.4	0.580	0.9/0	0,950	0.501	0.147	1.14	0 500	0.000	0,000	0.500
1	8707	2	9.7	1.10	27.4	0.591	0.975	0.905	0.391	0.190	1.71	0.500	0.000	0.000	0.500
-		,	45 4	0.75		0 004	0.077	0 070	0 901	0.045	0 33	0 000	0 000	0 000	1 000
2	8503	4	15.4	0.35	1.2	0.801	0.977	0.970	0.001	0.045	0.33	0.000	0.000	0.000	0 667
2	8504	3	9.7	0.40	10.8	0.729	0.973	0.969	0.729	0.057	0.30	0.555	0.000	0.000	0.007
2	8505	4	14.6	0.50	18.8	0.755	0.971	0.802	0.755	0.000	0.0/	0.000	0.000	0.000	1 000
2	8506	4	7.2	0.45	22.7	0.834	0.968	0.933	0.854	0.005	0.47	0.000	0.000	0.000	1 000
2	8507	3	10.2	0.63	26.7	0.806	0.952	0.951	0.806	0.114	1.19	0.000	0.000	0.000	1 000
2	8508	4	12.0	0.48	25.8	0.883	0.903	0.928	0.860	0.078	0.94	0.000	0.000	0.000	1.000
2	8509	4	6.0	0.68	23.8	0.841	0.913	0.946	0.841	0.095	0.62	0.000	0.000	0.000	1.000
2	8510	4	6.6	0.90	17.3	0.863	0.965	0.939	0.863	0.103	0.48	0.000	0.000	0.000	1.000
2	8511	2	3.6	0.80	13.6	0.875	0.976	0.949	0.875	0.069	0.17	0.000	0.000	0.000	1.000
2	8512	2	0.8	0.55	4.8	0.861	0.981	0.980	0.861	0.037	0.01	0.000	0.000	0.000	1.000
2	8601	1	0.7	0.50	-0.0	0.828	0.984	0.981	0.828	0.038	0.01	0.000	0.000	0.000	1.000
2	8603	4	3.0	0.35	6.4	0.780	0.983	0.971	0.780	0.045	0.06	0.000	0.000	0.000	1.000
2	8604	4	5.5	0.33	11.3	0.731	0.981	0.974	0.731	0.046	0.13	0.250	0.000	0.000	0.750
2	8605	4	20.3	0.45	19.9	0.744	0.974	0.794	0.711	0.079	1.15	0.250	0.000	0.000	0.750
2	8606	4	9.4	0.45	24.2	0.794	0.969	0.956	0.794	0.083	0.66	0.250	0.000	0.000	0.750
2	8607	2	8.6	0.80	25.8	0.879	0.947	0.958	0.879	0.144	1.42	0.000	0.000	0.000	1.000
2	8608	4	11.2	0.58	24.6	0.785	0.959	0.921	0.785	0.095	0.95	0.250	0.000	.0.000	0.750
2	8609	4	18.5	0.55	21.6	0.744	0.932	0.883	0.744	0.077	0.91	0.500	0.000	0.000	0.500
2	8610	4	10.2	0.65	17.7	0.794	0.959	0.910	0.794	0.074	0.40	0.000	0.000	0.000	1.000
2	8611	2	4.6	0.80	8.2	0.814	0.978	0.955	0.814	0.069	0.15	0.000	0.000	0.000	1.000
2	8612	2	0.7	0.40	5.2	0.832	0.982	0.981	0.832	0.027	0.01	0.000	0.000	0.000	1.000
ž	8701	2	1.4	0.70	2.1	0.855	0.986	0.980	0.855	0.053	0.02	0.000	0.000	0.000	1.000
2	8702	2	4.3	1.05	1.6	0.615	0.985	0.966	0.615	0.106	0.12	1.000	0.000	0.000	0.000
2	8703	1	11.0	1.00	8.8	0.545	0.981	0.970	0.545	0.128	0.46	1.000	0.000	0.000	0.000
2	8704	4	8.6	0.35	10.6	0.767	0.979	0.976	0.767	0.050	0.23	0.000	0.000	0.000	1.000
2	8705	Ĺ	21.2	0.48	16.0	0.664	0.972	0.863	0.664	0.083	0.93	0.500	0.000	0.000	0.500
2	8706	4	12 0	0.63	24 5	0.711	0.971	0.907	0.711	0.115	1.07	0.500	0.000	0.000	0.500
2	8707	Å	6.6	0.03	26.9	0.861	0.961	0.959	0.861	0.166	1.30	0.000	0.000	0.000	1.000
-	0101	-	0.0	01/0	2017										
٦	8503	10	10 R	1.30	7.4	0.686	0.972	0.943	0.686	0.167	0.67	0.500	0.000	0.000	0.500
ר ד	850/	7	18 4	1 00	11 6	0.578	0.966	0.911	0.578	0.154	1.35	1.000	0.000	0.000	0.000
נ ד	8505	10	77 7	0.04	17 6	0 687	0 020	0.731	0.663	0 168	3.36	0.400	0.000	0.100	0.500
ר ג	8502	10	77	1 19	21 7	0.700	0 924	0.942	0.790	0.215	1.39	0.000	0.000	0.000	1.000
ر ۲	8507	10	21. 2	0 95 0 95	25 /	0.770	0 400	0.040	0.627	0,153	2.42	0.200	0.300	0.000	0.500
2	8208	10	17 5	0.00	26 0	0.750	0 826	RAP 0	0.796	0,145	2.07	0.200	0.000	0.000	0.800
נ ד	8500	10	2.2	1 00	20.0 24 K	0 701	0 824	0 954	0,778	0,140	1.31	0.300	0.000	0.000	0.700
2	2510	0	17 7	1 20	19 4	0 70/	0 801	0.750	0.794	0_155	1.40	0.111	0.000	0.000	0.889
ר ק	0010	г У	1.01	1.30	10.0	0.774	0.071	0.000	0.830	0,098	0.67	0.000	0.000	0.000	1.000
د ج	0211	2	y.0	1.14	14.0	0.020	0.747	0.722	0.848	0.070	n 17	0.000	0,000	0,000	1.000
د -	0212	2	2.0	1.30	1.0	0.000	0.713	0.707	0.70/	0.00/ 0 004	0.12	0 600	0.000	0.000	0.400
<u>د</u>	0001	2	3.8	1.20	1.1	0.704	0.710	0.700	0.704 0.207	0.070	0.16	0.600	0 000	0 000	0.400
5	8602	5	0.0	1.00	0.0	0.003	0.9/0	0.900	0,000	0.101	0.10	0 200	0.000	0 000	0.200
3	8603	10	5.4	0.61	5.6	0.721	0.970	0.901	0.721	0.078	0.10	0.200	0.000	0.000	0.000
3	8604	10	10.5	U./7	11.4	0.000	0.9/8	0.960	0.000	0.110	0.00	0.100	0.000	0 111	0.000
3	8605	. 9	28.1	0.89	18.5	0.580	0.947	0.700	0.271	0.100	4 7/	0.009	0.000	0.000	0.000
3	8606	10	9.3	0.98	23.8	0.680	0.922	0.944	0.080	0.179	1.34	0.000	0.000	0.000	0.400
- 3	8607	5	26.8	1.16	25.7	0.790	0.655	0.969	0.621	0.206	5.80	0.200	0.000	0.000	0.200

					GROWTH REGULATION FACTORS						LIMITIN	G FACTO	R FREQU	ENCIES	
SEG	YRMO	OBS	CHL-A PPB	SECCHI METERS	TEMP DEG-C	P	N	SI	P,N,SI	LIGHT	PRODUCT.	P	N	SI	OTHER
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8608 8609 8610 8611 8612 8701 8702 8703 8704 8705 8706 8707	10 10 5 5 5 5 8 10 10 10	20.7 12.9 9.3 5.8 4.4 5.9 17.6 27.4 6.4 20.0 8.8 22.5	0.79 0.95 1.43 1.84 1.14 1.58 1.04 0.70 1.27 1.19 1.18	25.2 22.3 18.3 10.5 6.9 4.1 2.2 6.8 11.1 14.9 23.5 26.7	0.838 0.820 0.802 0.703 0.808 0.673 0.600 0.748 0.507 0.716 0.814	0.693 0.746 0.881 0.947 0.970 0.974 0.969 0.974 0.977 0.950 0.909 0.753	0.963 0.960 0.939 0.946 0.968 0.968 0.968 0.948 0.961 0.927 0.933 0.970	0.688 0.733 0.790 0.869 0.703 0.808 0.673 0.673 0.670 0.748 0.507 0.716 0.713	0.130 0.133 0.160 0.150 0.076 0.115 0.157 0.132 0.100 0.220 0.217 0.210	1.83 1.23 1.07 0.55 0.14 0.29 0.83 1.07 0.33 1.70 1.58 4.08	0.000 0.000 0.111 0.000 0.600 0.000 0.800 0.750 0.200 1.000 0.400 0.100	0.400 0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.600 0.700 0.889 1.000 0.400 1.000 0.200 0.250 0.800 0.800 0.600 0.700
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8601 8602 8603 8604 8605 8604 8605 8606 8607 8608 8609 8610 8611 8612 8701 8702 8703 8704 8705	20 19 17 18 20 20 19 9 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	6.5 21.4 12.5 8.5 10.5 17.2 5.5 6.6 7.1 31.3 9.48 8.9 11.0 6.2 7.6 8.5 7.6 8.5 7.6 8.5 7.6 8.5 7.9 14.8 16.4 9.0	$\begin{array}{c} 2.53\\ 2.06\\ 1.65\\ 1.64\\ 1.18\\ 1.52\\ 1.53\\ 1.63\\ 1.63\\ 1.68\\ 2.04\\ 1.87\\ 1.69\\ 1.48\\ 1.42\\ 2.85\\ 1.66\\ 1.34\\ 1.69\\ 1.97\\ 2.21\\ 2.59\\ 2.14\\ 2.20\\ 1.92\\ 2.33\\ 1.51\\ 2.09\\ 1.39\\ 1.68\end{array}$	7.2 11.9 17.4 22.0 25.8 26.0 25.0 19.2 15.0 8.1 2.8 0.9 5.4 11.7 18.4 23.3 26.1 22.6 19.3 11.6 7.7 4.7 2.1 6.5 10.6 23.2 26.5	0.600 0.564 0.692 0.738 0.674 0.769 0.701 0.677 0.677 0.638 0.535 0.638 0.570 0.491 0.611 0.611 0.611 0.612 0.658 0.778 0.632 0.651 0.664 0.610 0.607 0.528 0.601 0.554 0.564	0.952 0.944 0.903 0.725 0.397 0.657 0.827 0.960 0.969 0.951 0.837 0.655 0.837 0.958 0.951 0.950 0.951 0.837 0.955 0.837 0.955 0.951 0.955 0.951 0.955 0.951 0.955 0.951 0.955 0.951 0.955 0.951 0.955 0.951 0.955 0.951 0.955	0.847 0.448 0.541 0.893 0.953 0.945 0.917 0.850 0.947 0.949 0.932 0.937 0.726 0.573 0.923 0.923 0.964 0.948 0.939 0.879 0.948 0.925 0.894 0.770 0.738 0.922	0.600 0.394 0.519 0.676 0.646 0.645 0.645 0.689 0.535 0.638 0.570 0.471 0.443 0.650 0.500 0.618 0.587 0.634 0.664 0.528 0.601 0.528 0.601 0.528 0.601 0.528 0.601	0.277 0.275 0.269 0.291 0.211 0.241 0.209 0.180 0.156 0.132 0.137 0.165 0.182 0.200 0.400 0.294 0.237 0.261 0.257 0.226 0.199 0.138 0.156 0.187 0.226 0.199 0.138 0.156 0.187 0.225 0.225 0.221	0.58 1.69 1.15 2.51 0.83 0.75 0.59 0.26 0.37 0.32 0.93 0.77 1.91 3.47 1.78 1.38 1.15 0.92 0.29 0.33 0.38 0.68 1.51 1.87 2.39 2.06	0.850 0.158 0.316 0.000 0.250 0.368 0.556 0.000 1.000 0.800 0.800 0.778 0.450 0.600 0.263 0.579 0.650 0.600 0.900 1.000 0.900 0.900 0.786 0.800 0.786 0.5800 0.579 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.600 0.263 0.579 0.650 0.600 0.900 0.900 0.786 0.5800 0.578 0.58000 0.58000 0.58000 0.58	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.353\\ 0.450\\ 0.300\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.421\\ 0.316\\ 0.100\\ 0.000\\ 0.$	0.000 0.789 0.632 0.000 0	0.150 0.053 0.529 0.111 0.550 0.526 0.444 1.000 0.200 0.055 0.250 0.400 0.105 0.250 0.400 0.200 0.200 0.200 0.316 0.200 0.200 0.200 0.316 0.200 0.200 0.200 0.316 0.200 0.200 0.200 0.200 0.200 0.200 0.316 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.2144 0.000 0.053 0.316 0.421
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8503 8504 8505 8506 8507 8508 8507 8508 8507 8508 8507 8508 8507 8603 8604 8605 8606 8607 8608 8606 8607 8608 8607 8608 8611 8612 8701 8702 8703 8704 8705 8706 8707	664656663333665636663333665536	13.8 23.8 4.0 6.3 5.3 6.2 4.2 4.0 8.7 3.6 6.9 5.0 4.2 7.3 8.8 12.6 8.9 5.0 4.5 5.2 13.3 6.3 6.3 5.2 13.3 6.3 1.9 35.1 7.3	2.32 2.12 2.90 1.97 1.66 2.03 1.63 1.57 2.30 1.93 2.27 2.05 2.28 3.12 1.85 1.85 1.80 1.95 2.42 2.63 2.57 2.90 1.77 1.73 2.97 1.60 1.10 2.03	$\begin{array}{c} 8.1\\ 13.3\\ 17.2\\ 22.5\\ 26.1\\ 25.5\\ 20.0\\ 15.1\\ 9.7\\ 3.9\\ 2.1\\ 11.8\\ 18.3\\ 23.4\\ 26.7\\ 26.3\\ 19.5\\ 12.3\\ 8.4\\ 4.9\\ 2.4\\ 6.5\\ 10.4\\ 17.3\\ 24.1\\ 26.6\end{array}$	0.572 0.569 0.710 0.615 0.665 0.671 0.651 0.651 0.667 0.773 0.681 0.507 0.461 0.519 0.572 0.639 0.572 0.639 0.572 0.622 0.545 0.622 0.552 0.686 0.573 0.569 0.512 0.545 0.622 0.545 0.622 0.545 0.632 0.545 0.622 0.545 0.632 0.545 0.622 0.545 0.569 0.572 0.545 0.569 0.572 0.545 0.622 0.545 0.632 0.552 0.636 0.572 0.545 0.562 0.552 0	0.908 0.908 0.906 0.886 0.496 0.497 0.735 0.861 0.927 0.926 0.949 0.961 0.958 0.935 0.713 0.539 0.588 0.633 0.539 0.588 0.641 0.756 0.830 0.914 0.932 0.943 0.915 0.822 0.522 0.595	0.531 0.320 0.553 0.809 0.929 0.851 0.887 0.620 0.833 0.900 0.909 0.909 0.909 0.894 0.270 0.513 0.815 0.820 0.820 0.821 0.951 0.921 0.855 0.820 0.929 0.851 0.820 0.929 0.820 0.909 0.894 0.270 0.513 0.825 0.921 0.921 0.925 0.825 0.925 0.825 0.925 0.825 0.925 0.825 0.925 0.825 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.955 0.855 0.951 0.957 0.855 0.855 0.951 0.957 0.855 0.957 0.855 0.957 0.855 0.855 0.957 0.855 0.855 0.855 0.957 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.957 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.957 0.855 0.855 0.855 0.957 0.855 0.855 0.957 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.4557 0.4557 0.4557 0.4557 0.5553 0.6688 0.736	0.478 0.320 0.553 0.288 0.485 0.449 0.545 0.647 0.773 0.609 0.681 0.507 0.270 0.464 0.535 0.571 0.623 0.545 0.545 0.545 0.545	0.266 0.281 0.337 0.287 0.306 0.226 0.181 0.132 0.145 0.212 0.247 0.284 0.416 0.322 0.303 0.301 0.301 0.263 0.200 0.169 0.131 0.179 0.263 0.202 0.339	0.99 1.54 0.72 1.25 0.62 1.15 0.57 0.43 0.54 0.25 0.37 0.42 0.61 0.69 1.80 2.82 1.79 0.93 1.01 0.67 0.93 1.01 0.67 0.25 1.40 3.89 3.31 2.00	0.333 0.000 0.333 0.000 0.167 1.000 0.000 1.000 0.667 1.000 0.667 1.000 0.667 0.333 0.667 0.833 1.000 1.000 0.667 1.000 0.667 1.000 0.667 0.100 0.667 1.000 0.667 0.000 0.667 0.000	0.000 0.000 0.667 1.000 0.667 0.500 0.167 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.667 0.500 0.000 0	0.500 1.000 0	0.167 0.000 0.000 0.000 0.167 0.000 1.000 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.000 0.000 0.000 0.333 0.000 0.000 0.333 0.000 0.000 0.333 0.000 0.000 0.000 0.333 0.000 0.000 0.000 0.333 0.000 0.000 0.000 0.000 0.333 0.000 0

-

							GROWTH	REGULATI	ON FACTO	RS		LIMITIN	G FACTO	R FREQU	ENCIES
SEG	YR SEAS	OBS	CHL-A PPB	METERS	DEG-C	P	N	SI	P,N,SI	LIGHT	PRODUCT.	P	N	SI	OTHER
1 1 1 1 1 1 1 1	85 1WIN 85 2SPR 85 3SUM 85 4FAL 86 2SPR 86 3SUM 86 4FAL 87 1WIN 87 2SPR 87 3SUM	2 6 6 3 6 5 4 2 6 2	16.0 9.4 10.5 2.9 10.5 10.1 6.4 0.9 13.5 9.7	0.35 0.88 1.10 1.00 0.77 1.08 1.00 2.00 0.72 1.10	6.8 18.4 25.9 11.5 19.0 24.5 12.4 2.6 16.7 27.4	0.814 0.760 0.606 0.838 0.653 0.541 0.726 0.788 0.648 0.591	0.978 0.974 0.964 0.979 0.976 0.972 0.978 0.987 0.977 0.975	0.974 0.926 0.917 0.952 0.912 0.919 0.945 0.968 0.950 0.963	0.814 0.760 0.606 0.838 0.653 0.541 0.726 0.788 0.648 0.591	0.045 0.150 0.177 0.091 0.130 0.171 0.098 0.170 0.123 0.198	0.50 1.13 1.42 0.21 0.89 1.06 0.48 0.06 0.96 1.51	0.000 0.333 0.667 0.000 0.667 0.800 0.250 0.000 0.667 0.500	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.000 0.667 0.333 1.000 0.333 0.200 0.750 1.000 0.333 0.500
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85 1WIN 85 2SPR 85 3SUM 85 4FAL 86 1WIN 86 2SPR 86 3SUM 86 4FAL 87 1WIN 87 2SPR 87 3SUM	4 11 11 5 12 10 8 5 12 4	15.4 10.6 9.3 4.4 2.5 11.7 13.6 6.4 4.4 13.9 6.6	0.35 0.45 0.59 0.79 0.38 0.41 0.61 0.63 0.90 0.48 0.93	7.2 18.1 25.3 13.2 5.1 18.5 23.7 12.2 3.3 17.0 26.9	0.801 0.769 0.847 0.866 0.789 0.756 0.787 0.808 0.697 0.714 0.861	0.977 0.970 0.920 0.972 0.983 0.975 0.946 0.970 0.985 0.974 0.961	0.970 0.918 0.941 0.952 0.973 0.908 0.914 0.939 0.973 0.916 0.959	0.801 0.769 0.838 0.866 0.789 0.745 0.787 0.808 0.697 0.714 0.861	0.045 0.078 0.094 0.078 0.044 0.069 0.098 0.061 0.089 0.083 0.166	0.33 0.59 0.89 0.29 0.05 0.65 1.03 0.24 0.15 0.74 1.30	0.000 0.273 0.000 0.000 0.250 0.300 0.000 0.600 0.333 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.000 0.727 1.000 1.000 0.750 0.700 1.000 0.400 0.667 1.000
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	85 1WIN 85 2SPR 85 3SUM 85 4FAL 86 1WIN 86 2SPR 86 3SUM 86 4FAL 87 1WIN 87 2SPR 87 3SUM	10 27 30 19 20 29 25 19 18 30	10.8 21.6 15.8 9.7 5.2 15.6 18.8 7.1 18.7 11.7 22.5	1.39 1.07 0.91 1.29 0.88 0.93 1.46 1.33 1.05 1.18	7.4 17.6 25.4 14.6 3.3 17.8 24.1 13.2 4.8 16.5 26.7	0.686 0.697 0.778 0.823 0.707 0.644 0.821 0.793 0.678 0.657 0.814	0.972 0.937 0.779 0.927 0.975 0.949 0.707 0.921 0.973 0.945 0.753	0.943 0.856 0.964 0.941 0.964 0.891 0.963 0.949 0.952 0.940 0.970	0.686 0.688 0.734 0.823 0.707 0.641 0.692 0.788 0.678 0.657 0.713	0.167 0.182 0.146 0.122 0.088 0.148 0.147 0.136 0.135 0.179 0.210	0.67 2.11 1.93 0.87 0.16 1.33 1.98 0.69 0.79 1.20 4.08	0.500 0.407 0.233 0.053 0.400 0.724 0.040 0.211 0.556 0.533 0.100	0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200	0.000 0.037 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.000 0.000	0.500 0.556 0.667 0.947 0.600 0.241 0.560 0.789 0.444 0.467 0.700
4444444444	85 1WIN 85 2SPR 85 3SUM 85 4FAL 86 1WIN 86 2SPR 86 3SUM 86 4FAL 87 1WIN 87 2SPR 87 3SUM	20 55 58 38 40 58 40 34 40 34 58 19	6.5 14.3 11.1 5.8 7.2 9.1 13.7 8.8 8.0 17.0 9.0	2.53 1.79 1.42 1.80 1.63 2.00 1.73 2.29 2.17 1.66 1.68	7.2 16.9 25.6 15.3 3.6 18.0 24.5 14.5 4.7 16.3 26.5	0.600 0.662 0.716 0.724 0.578 0.590 0.695 0.644 0.581 0.591 0.698	0.952 0.862 0.579 0.878 0.962 0.914 0.620 0.834 0.951 0.823 0.634	0.847 0.618 0.938 0.873 0.939 0.741 0.948 0.906 0.919 0.756 0.922	0.600 0.525 0.558 0.720 0.578 0.523 0.581 0.636 0.581 0.500 0.608	0.277 0.278 0.221 0.162 0.301 0.255 0.197 0.212 0.263 0.292	0.58 1.56 1.51 0.57 0.32 1.21 1.98 0.88 0.49 1.85 2.06	0.850 0.200 0.103 0.316 0.850 0.603 0.333 0.700 0.882 0.534 0.158	0.000 0.109 0.517 0.000 0.000 0.017 0.500 0.050 0.050 0.000 0.172 0.421	0.000 0.491 0.000 0.053 0.000 0.224 0.000 0.000 0.000 0.000 0.172 0.000	0.150 0.200 0.379 0.632 0.155 0.155 0.167 0.250 0.118 0.121 0.421
5 55555555555555	85 1WIN 85 2SPR 85 3SUM 85 4FAL 86 1WIN 86 2SPR 86 3SUM 86 4FAL 87 1WIN 87 2SPR 87 3SUM	6 16 17 12 12 17 15 12 12 14 6	13.8 12.5 5.2 5.1 6.2 8.7 8.0 6.6 7.9 31.6 7.3	2.32 2.26 1.80 1.78 2.08 2.38 2.11 2.68 2.36 1.35 2.03	8.1 17.7 25.9 16.2 4.0 17.8 24.9 14.9 5.1 15.8 26.6	0.572 0.622 0.644 0.685 0.576 0.517 0.635 0.582 0.568 0.653 0.651	0.908 0.771 0.435 0.815 0.949 0.865 0.600 0.815 0.933 0.797 0.595	0.531 0.561 0.886 0.744 0.902 0.534 0.876 0.889 0.890 0.515 0.736	0.478 0.448 0.415 0.632 0.576 0.420 0.550 0.582 0.568 0.454 0.584	0.266 0.332 0.272 0.160 0.212 0.336 0.301 0.224 0.232 0.214 0.339	0.99 1.22 0.79 0.41 0.37 1.05 1.65 0.74 0.47 2.70 2.00	0.333 0.125 0.235 0.333 0.917 0.353 0.400 0.917 0.917 0.917 0.214 0.000	0.000 0.250 0.706 0.083 0.000 0.118 0.467 0.000 0.000 0.214 0.667	0.500 0.625 0.000 0.250 0.000 0.529 0.000 0.000 0.000 0.500 0.000	0.167 0.000 0.059 0.333 0.083 0.000 0.133 0.083 0.083 0.071 0.333

.

•

H-1